Problem:
Given a nonnegative real number x xx , let ⟨ x ⟩ \langle x\rangle⟨ x ⟩ denote the fractional part of x xx ; that is, ⟨ x ⟩ = x − ⌊ x ⌋ \langle x\rangle=x-\lfloor x\rfloor⟨ x ⟩ = x − ⌊ x ⌋ , where ⌊ x ⌋ \lfloor x\rfloor⌊ x ⌋ denotes the greatest integer less than or equal to x xx . Suppose that a aa is positive, ⟨ a − 1 ⟩ = ⟨ a 2 ⟩ \left\langle a^{-1}\right\rangle=\left\langle a^{2}\right\rangle⟨ a − 1 ⟩ = ⟨ a 2 ⟩ , and 2 < a 2 < 3 2<a^{2}<32 < a 2 < 3 . Find the value of a 12 − 144 a − 1 a^{12}-144 a^{-1}a 1 2 − 1 4 4 a − 1 .
Solution:
Notice first that the given data imply that ⟨ a − 1 ⟩ = a − 1 \left\langle a^{-1}\right\rangle=a^{-1}⟨ a − 1 ⟩ = a − 1 and ⟨ a 2 ⟩ = a 2 − 2 \left\langle a^{2}\right\rangle=a^{2}-2⟨ a 2 ⟩ = a 2 − 2 . Hence a aa must satisfy the equation a − 1 = a 2 − 2 a^{-1}=a^{2}-2a − 1 = a 2 − 2 , or a 3 − 2 a − 1 = 0 a^{3}-2 a-1=0a 3 − 2 a − 1 = 0 . This factors as
( a + 1 ) ( a 2 − a − 1 ) = 0 (a+1)\left(a^{2}-a-1\right)=0
( a + 1 ) ( a 2 − a − 1 ) = 0
whose only positive root is a = 1 2 ( 1 + 5 ) a=\frac{1}{2}(1+\sqrt{5})a = 2 1 ​ ( 1 + 5 ​ ) . Now use the relations a 2 = a + 1 a^{2}=a+1a 2 = a + 1 and a 3 = 2 a + 1 a^{3}=2 a+1a 3 = 2 a + 1 to calculate
a 6 = 8 a + 5 a 12 = 144 a + 89 a 13 = 233 a + 144 \begin{aligned}
a^{6} &=8 a+5 \\
a^{12} &=144 a+89 \\
a^{13} &=233 a+144
\end{aligned}
a 6 a 1 2 a 1 3 ​ = 8 a + 5 = 1 4 4 a + 8 9 = 2 3 3 a + 1 4 4 ​
from which it follows that a 12 − 144 a − 1 = a 13 − 144 a = 233 a^{12}-144 a^{-1}=\frac{a^{13}-144}{a}=\boxed{233}a 1 2 − 1 4 4 a − 1 = a a 1 3 − 1 4 4 ​ = 2 3 3 ​ .
OR \textbf{OR}
OR
As above, show that a = 1 2 ( 1 + 5 ) a=\frac{1}{2}(1+\sqrt{5})a = 2 1 ​ ( 1 + 5 ​ ) . The cubic equation yields a 3 = 2 a + 1 = 2 + 5 a^{3}=2 a+1=2+\sqrt{5}a 3 = 2 a + 1 = 2 + 5 ​ . It follows that a 6 = 9 + 4 5 a^{6}=9+4 \sqrt{5}a 6 = 9 + 4 5 ​ and a 12 = 161 + 72 5 a^{12}=161+72 \sqrt{5}a 1 2 = 1 6 1 + 7 2 5 ​ . The cubic equation also implies that 144 a − 1 = 144 ( a 2 − 2 ) = − 72 + 72 5 144 a^{-1}=144\left(a^{2}-2\right)=-72+72 \sqrt{5}1 4 4 a − 1 = 1 4 4 ( a 2 − 2 ) = − 7 2 + 7 2 5 ​ , hence a 12 − 144 a − 1 = 233 a^{12}-144 a^{-1}=\boxed{233}a 1 2 − 1 4 4 a − 1 = 2 3 3 ​ .
OR \textbf{OR}
OR
As above, a = ( 1 + 5 ) / 2 a=(1+\sqrt{5}) / 2a = ( 1 + 5 ​ ) / 2 . Let b = − a − 1 b=-a^{-1}b = − a − 1 and use Binet's formula for Fibonacci numbers to calculate
F n = a n − b n 5 = a n − b n a − b = a n − 1 + a n − 2 b + ⋯ + a b n − 2 + b n − 1 F_{n}=\frac{a^{n}-b^{n}}{\sqrt{5}}=\frac{a^{n}-b^{n}}{a-b}=a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}
F n ​ = 5 ​ a n − b n ​ = a − b a n − b n ​ = a n − 1 + a n − 2 b + ⋯ + a b n − 2 + b n − 1
Thus
F n = a n − 1 + F n − 1 b = a n − 1 − F n − 1 a − 1 F_{n}=a^{n-1}+F_{n-1} b=a^{n-1}-F_{n-1} a^{-1}
F n ​ = a n − 1 + F n − 1 ​ b = a n − 1 − F n − 1 ​ a − 1
In particular,
233 = F 13 = a 12 − F 12 a − 1 = a 12 − 144 a − 1 \boxed{233}=F_{13}=a^{12}-F_{12} a^{-1}=a^{12}-144 a^{-1}
2 3 3 ​ = F 1 3 ​ = a 1 2 − F 1 2 ​ a − 1 = a 1 2 − 1 4 4 a − 1
The problems on this page are the property of the MAA's American Mathematics Competitions