Problem:
Let z 1 , z 2 , z 3 , … , z 12 z_{1}, z_{2}, z_{3}, \ldots, z_{12}z 1 , z 2 , z 3 , … , z 1 2 be the 12 zeros of the polynomial z 12 − 2 36 z^{12}-2^{36}z 1 2 − 2 3 6 . For each j jj , let w j w_{j}w j be one of z j z_{j}z j or i z j i z_{j}i z j . Then the maximum possible value of the real part of ∑ j = 1 12 w j \sum_{j=1}^{12} w_{j}∑ j = 1 1 2 w j can be written as m + n m+\sqrt{n}m + n , where m mm and n nn are positive integers. Find m + n m+nm + n .
Solution:
Without loss of generality, let z j = 8 ( cos j π 6 + i sin j π 6 ) z_{j}=8\left(\cos \frac{j \pi}{6}+i \sin \frac{j \pi}{6}\right)z j = 8 ( cos 6 j π + i sin 6 j π ) , so that i z j = i z_{j}=i z j = 8 ( − sin j π 6 + i cos j π 6 ) 8\left(-\sin \frac{j \pi}{6}+i \cos \frac{j \pi}{6}\right)8 ( − sin 6 j π + i cos 6 j π ) . Because ℜ ( ∑ j = 1 12 w j ) = ∑ j = 1 12 ℜ ( w j ) \Re\left(\sum_{j=1}^{12} w_{j}\right)=\sum_{j=1}^{12} \Re\left(w_{j}\right)ℜ ( ∑ j = 1 1 2 w j ) = ∑ j = 1 1 2 ℜ ( w j ) , the sum is maximized when ℜ ( w j ) = max ( 8 cos j π 6 , − 8 sin j π 6 ) \Re\left(w_{j}\right)=\max \left(8 \cos \frac{j \pi}{6},-8 \sin \frac{j \pi}{6}\right)ℜ ( w j ) = max ( 8 cos 6 j π , − 8 sin 6 j π ) for each 1 ≤ j ≤ 12 1 \leq j \leq 121 ≤ j ≤ 1 2 . Because cos j π 6 < − sin j π 6 \cos \frac{j \pi}{6}<-\sin \frac{j \pi}{6}cos 6 j π < − sin 6 j π for 5 ≤ j ≤ 10 5 \leq j \leq 105 ≤ j ≤ 1 0 , the maximum possible sum is
8 ( cos 0 π 6 + cos 1 π 6 + cos 2 π 6 + cos 3 π 6 + cos 4 π 6 + cos 11 π 6 ) − 8 ( sin 5 π 6 + sin 6 π 6 + sin 7 π 6 + sin 8 π 6 + sin 9 π 6 + sin 10 π 6 ) = 8 ( 1 + 3 2 + 1 2 + 0 − 1 2 + 3 2 ) − 8 ( 1 2 + 0 − 1 2 − 3 2 − 1 − 3 2 ) = 16 + 16 3 = 16 + 768 , \begin{aligned}
&8\left(\cos \frac{0 \pi}{6}+\cos \frac{1 \pi}{6}+\cos \frac{2 \pi}{6}+\cos \frac{3 \pi}{6}+\cos \frac{4 \pi}{6}+\cos \frac{11 \pi}{6}\right)- \\
&8\left(\sin \frac{5 \pi}{6}+\sin \frac{6 \pi}{6}+\sin \frac{7 \pi}{6}+\sin \frac{8 \pi}{6}+\sin \frac{9 \pi}{6}+\sin \frac{10 \pi}{6}\right)= \\
&8\left(1+\frac{\sqrt{3}}{2}+\frac{1}{2}+0-\frac{1}{2}+\frac{\sqrt{3}}{2}\right)-8\left(\frac{1}{2}+0-\frac{1}{2}-\frac{\sqrt{3}}{2}-1-\frac{\sqrt{3}}{2}\right) \\
&= 16+16 \sqrt{3} \\
&= 16+\sqrt{768},
\end{aligned}
8 ( cos 6 0 π + cos 6 1 π + cos 6 2 π + cos 6 3 π + cos 6 4 π + cos 6 1 1 π ) − 8 ( sin 6 5 π + sin 6 6 π + sin 6 7 π + sin 6 8 π + sin 6 9 π + sin 6 1 0 π ) = 8 ( 1 + 2 3 + 2 1 + 0 − 2 1 + 2 3 ) − 8 ( 2 1 + 0 − 2 1 − 2 3 − 1 − 2 3 ) = 1 6 + 1 6 3 = 1 6 + 7 6 8 ,
and the requested sum is 16 + 768 = 784 16+768=\boxed{784}1 6 + 7 6 8 = 7 8 4 .
The problems on this page are the property of the MAA's American Mathematics Competitions