Problem:
Segments A B ‾ , A C ‾ \overline{A B}, \overline{A C}A B , A C , and A D ‾ \overline{A D}A D are edges of a cube and segment A G ‾ \overline{A G}A G is a diagonal through the center of the cube. Point P PP satisfies B P = 60 10 , C P = 60 5 , D P = 120 2 B P=60 \sqrt{10}, C P=60 \sqrt{5}, D P=120 \sqrt{2}B P = 6 0 1 0 ​ , C P = 6 0 5 ​ , D P = 1 2 0 2 ​ , and G P = 36 7 G P=36 \sqrt{7}G P = 3 6 7 ​ . Find A P A PA P .
Solution:
Let the cube have side length s ss and place the cube in Cartesian 3 33 -space with vertices A ( 0 , 0 , 0 ) , B ( s , 0 , 0 ) , C ( 0 , s , 0 ) A(0,0,0), B(s, 0,0), C(0, s, 0)A ( 0 , 0 , 0 ) , B ( s , 0 , 0 ) , C ( 0 , s , 0 ) , D ( 0 , 0 , s ) D(0,0, s)D ( 0 , 0 , s ) , and G ( s , s , s ) G(s, s, s)G ( s , s , s ) . Let P PP have coordinates ( x , y , z ) (x, y, z)( x , y , z ) . Then
B P 2 = ( x − s ) 2 + y 2 + z 2 = ( 60 10 ) 2 C P 2 = x 2 + ( y − s ) 2 + z 2 = ( 60 5 ) 2 D P 2 = x 2 + y 2 + ( z − s ) 2 = ( 120 2 ) 2 G P 2 = ( x − s ) 2 + ( y − s ) 2 + ( z − s ) 2 = ( 36 7 ) 2 . \begin{aligned}
&B P^{2}=(x-s)^{2}+y^{2}+z^{2}=(60 \sqrt{10})^{2} \\
&C P^{2}=x^{2}+(y-s)^{2}+z^{2}=(60 \sqrt{5})^{2} \\
&D P^{2}=x^{2}+y^{2}+(z-s)^{2}=(120 \sqrt{2})^{2} \\
&G P^{2}=(x-s)^{2}+(y-s)^{2}+(z-s)^{2}=(36 \sqrt{7})^{2} .
\end{aligned}
​ B P 2 = ( x − s ) 2 + y 2 + z 2 = ( 6 0 1 0 ​ ) 2 C P 2 = x 2 + ( y − s ) 2 + z 2 = ( 6 0 5 ​ ) 2 D P 2 = x 2 + y 2 + ( z − s ) 2 = ( 1 2 0 2 ​ ) 2 G P 2 = ( x − s ) 2 + ( y − s ) 2 + ( z − s ) 2 = ( 3 6 7 ​ ) 2 . ​
Adding the first three equations and subtracting the fourth equation yields
2 ( x 2 + y 2 + z 2 ) = 1 2 2 ⋅ [ ( 5 10 ) 2 + ( 5 5 ) 2 + ( 10 2 ) 2 − ( 3 7 ) 2 ] = 1 2 2 ⋅ ( 250 + 125 + 200 − 63 ) = 2 ⋅ 1 2 2 ⋅ 1 6 2 = 2 ⋅ 19 2 2 \begin{aligned}
2\left(x^{2}+y^{2}+z^{2}\right) =12^{2} \cdot\left[(5 \sqrt{10})^{2}+(5 \sqrt{5})^{2}+(10 \sqrt{2})^{2}-(3 \sqrt{7})^{2}\right] \\
=12^{2} \cdot(250+125+200-63)=2 \cdot 12^{2} \cdot 16^{2}=2 \cdot 192^{2}
\end{aligned}
2 ( x 2 + y 2 + z 2 ) = 1 2 2 ⋅ [ ( 5 1 0 ​ ) 2 + ( 5 5 ​ ) 2 + ( 1 0 2 ​ ) 2 − ( 3 7 ​ ) 2 ] = 1 2 2 ⋅ ( 2 5 0 + 1 2 5 + 2 0 0 − 6 3 ) = 2 ⋅ 1 2 2 ⋅ 1 6 2 = 2 ⋅ 1 9 2 2 ​
Therefore A P = x 2 + y 2 + z 2 = 192 A P=\sqrt{x^{2}+y^{2}+z^{2}}=\boxed{192}A P = x 2 + y 2 + z 2 ​ = 1 9 2 ​ .