Problem:
Let △ A B C \triangle A B C△ A B C have side lengths A B = 30 , B C = 32 A B=30, B C=32A B = 3 0 , B C = 3 2 , and A C = 34 A C=34A C = 3 4 . Point X XX lies in the interior of B C ‾ \overline{B C}B C , and points I 1 I_{1}I 1 and I 2 I_{2}I 2 are the incenters of △ A B X \triangle A B X△ A B X and △ A C X \triangle A C X△ A C X , respectively. Find the minimum possible area of △ A I 1 I 2 \triangle A I_{1} I_{2}△ A I 1 I 2 as X XX varies along B C ‾ \overline{B C}B C .
Solution:
First note that
∠ I 1 A I 2 = ∠ I 1 A X + ∠ X A I 2 = ∠ B A X 2 + ∠ C A X 2 = ∠ A 2 . \angle I_{1} A I_{2}=\angle I_{1} A X+\angle X A I_{2}=\frac{\angle B A X}{2}+\frac{\angle C A X}{2}=\frac{\angle A}{2} .
∠ I 1 A I 2 = ∠ I 1 A X + ∠ X A I 2 = 2 ∠ B A X + 2 ∠ C A X = 2 ∠ A .
This is a constant not depending on X XX . Let a = B C , b = A C , c = A B a=B C, b=A C, c=A Ba = B C , b = A C , c = A B , and α = ∠ A X B \alpha=\angle A X Bα = ∠ A X B . Note that
∠ A I 1 B = 18 0 ∘ − ( ∠ I 1 A B + ∠ I 1 B A ) = 18 0 ∘ − 1 2 ( 18 0 ∘ − α ) = 9 0 ∘ + α 2 . \angle A I_{1} B=180^{\circ}-\left(\angle I_{1} A B+\angle I_{1} B A\right)=180^{\circ}-\frac{1}{2}\left(180^{\circ}-\alpha\right)=90^{\circ}+\frac{\alpha}{2} .
∠ A I 1 B = 1 8 0 ∘ − ( ∠ I 1 A B + ∠ I 1 B A ) = 1 8 0 ∘ − 2 1 ( 1 8 0 ∘ − α ) = 9 0 ∘ + 2 α .
Applying the Law of Sines to △ A B I 1 \triangle A B I_{1}△ A B I 1 gives
A I 1 A B = sin ( ∠ A B I 1 ) sin ( ∠ A I 1 B ) , implying that A I 1 = c sin B 2 cos α 2 \frac{A I_{1}}{A B}=\frac{\sin \left(\angle A B I_{1}\right)}{\sin \left(\angle A I_{1} B\right)}, \quad \text { implying that } \quad A I_{1}=\frac{c \sin \frac{B}{2}}{\cos \frac{\alpha}{2}}
A B A I 1 = sin ( ∠ A I 1 B ) sin ( ∠ A B I 1 ) , implying that A I 1 = cos 2 α c sin 2 B
Analogously, ∠ A I 2 C = 9 0 ∘ + ∠ A X C 2 = 18 0 ∘ − α 2 \angle A I_{2} C=90^{\circ}+\frac{\angle A X C}{2}=180^{\circ}-\frac{\alpha}{2}∠ A I 2 C = 9 0 ∘ + 2 ∠ A X C = 1 8 0 ∘ − 2 α and
A I 2 = b sin C 2 sin α 2 A I_{2}=\frac{b \sin \frac{C}{2}}{\sin \frac{\alpha}{2}}
A I 2 = sin 2 α b sin 2 C
Because the area of △ I 1 A I 2 \triangle I_{1} A I_{2}△ I 1 A I 2 can be written as 1 2 ( A I 1 ) ( A I 2 ) sin ( ∠ I 1 A I 2 ) \frac{1}{2}\left(A I_{1}\right)\left(A I_{2}\right) \sin \left(\angle I_{1} A I_{2}\right)2 1 ( A I 1 ) ( A I 2 ) sin ( ∠ I 1 A I 2 ) , it follows that
[ △ A I 1 I 2 ] = b c sin A 2 sin B 2 sin C 2 2 cos α 2 sin α 2 = b c sin A 2 sin B 2 sin C 2 sin α ≥ b c sin A 2 sin B 2 sin C 2 \begin{aligned}
{\left[\triangle A I_{1} I_{2}\right]=\frac{b c \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{2 \cos \frac{\alpha}{2} \sin \frac{\alpha}{2}} } &=\frac{b c \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{\sin \alpha} \\
&\geq b c \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}
\end{aligned}
[ △ A I 1 I 2 ] = 2 cos 2 α sin 2 α b c sin 2 A sin 2 B sin 2 C = sin α b c sin 2 A sin 2 B sin 2 C ≥ b c sin 2 A sin 2 B sin 2 C
with equality when α = 9 0 ∘ \alpha=90^{\circ}α = 9 0 ∘ , that is, when X XX is the foot of the perpendicular from A AA to B C ‾ \overline{B C}B C . In this case the desired area is b c sin A 2 sin B 2 sin C 2 b c \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}b c sin 2 A sin 2 B sin 2 C . To make this feasible to compute, note that
sin A 2 = 1 − cos A 2 = 1 − b 2 + c 2 − a 2 2 b c 2 = ( a − b + c ) ( a + b − c ) 4 b c . \sin \frac{A}{2}=\sqrt{\frac{1-\cos A}{2}}=\sqrt{\frac{1-\frac{b^{2}+c^{2}-a^{2}}{2 b c}}{2}}=\sqrt{\frac{(a-b+c)(a+b-c)}{4 b c}} .
sin 2 A = 2 1 − cos A = 2 1 − 2 b c b 2 + c 2 − a 2 = 4 b c ( a − b + c ) ( a + b − c ) .
Applying similar logic to sin B 2 \sin \frac{B}{2}sin 2 B and sin C 2 \sin \frac{C}{2}sin 2 C and simplifying yields a final answer of
b c sin A 2 sin B 2 sin C 2 = b c ⋅ ( a − b + c ) ( b − c + a ) ( c − a + b ) 8 a b c = ( 32 − 34 + 30 ) ( 34 − 30 + 32 ) ( 30 − 32 + 34 ) 8 ⋅ 32 = 126 . \begin{aligned}
b c \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} &=b c \cdot \frac{(a-b+c)(b-c+a)(c-a+b)}{8 a b c} \\
&=\frac{(32-34+30)(34-30+32)(30-32+34)}{8 \cdot 32}=\boxed{126}.
\end{aligned}
b c sin 2 A sin 2 B sin 2 C = b c ⋅ 8 a b c ( a − b + c ) ( b − c + a ) ( c − a + b ) = 8 ⋅ 3 2 ( 3 2 − 3 4 + 3 0 ) ( 3 4 − 3 0 + 3 2 ) ( 3 0 − 3 2 + 3 4 ) = 1 2 6 .
The problems on this page are the property of the MAA's American Mathematics Competitions