Problem:
The complex numbers z zz and w ww satisfy the system
z + 20 i w = 5 + i w + 12 i z = − 4 + 10 i \begin{aligned}
z+\frac{20 i}{w} & =5+i \\
w+\frac{12 i}{z} & =-4+10 i
\end{aligned}
z + w 2 0 i ​ w + z 1 2 i ​ ​ = 5 + i = − 4 + 1 0 i ​
Find the smallest possible value of ∣ z w ∣ 2 |z w|^{2}∣ z w ∣ 2 .
Solution:
Multiply corresponding sides of the given two equations to yield
( z + 20 i w ) ( w + 12 i z ) = ( 5 + i ) ( − 4 + 10 i ) , and z w + 32 i − 240 z w = − 30 + 46 i . \begin{aligned}
\left(z+\frac{20 i}{w}\right)\left(w+\frac{12 i}{z}\right) &=(5+i)(-4+10 i), \text { and } \\
z w+32 i-\frac{240}{z w} &=-30+46 i .
\end{aligned}
( z + w 2 0 i ​ ) ( w + z 1 2 i ​ ) z w + 3 2 i − z w 2 4 0 ​ ​ = ( 5 + i ) ( − 4 + 1 0 i ) , and = − 3 0 + 4 6 i . ​
Letting v = z w v=z wv = z w gives v 2 − ( − 30 + 14 i ) v − 240 = 0 v^{2}-(-30+14 i) v-240=0v 2 − ( − 3 0 + 1 4 i ) v − 2 4 0 = 0 . Thus
v = − 30 + 14 i ± ( 30 − 14 i ) 2 + 960 2 = − 15 + 7 i ± ( 15 − 7 i ) 2 + 240 = − 15 + 7 i ± 416 − 210 i \begin{aligned}
v &=\frac{-30+14 i \pm \sqrt{(30-14 i)^{2}+960}}{2} \\
&=-15+7 i \pm \sqrt{(15-7 i)^{2}+240} \\
&=-15+7 i \pm \sqrt{416-210 i}
\end{aligned}
v ​ = 2 − 3 0 + 1 4 i ± ( 3 0 − 1 4 i ) 2 + 9 6 0 ​ ​ = − 1 5 + 7 i ± ( 1 5 − 7 i ) 2 + 2 4 0 ​ = − 1 5 + 7 i ± 4 1 6 − 2 1 0 i ​ ​
Letting 416 − 210 i = ( a + b i ) 2 416-210 i=(a+b i)^{2}4 1 6 − 2 1 0 i = ( a + b i ) 2 and equating the real and imaginary parts results in a b = − 105 a b=-105a b = − 1 0 5 and a 2 − b 2 = 416 a^{2}-b^{2}=416a 2 − b 2 = 4 1 6 . The real solutions to this system are ( a , b ) = ( 21 , − 5 ) (a, b)=(21,-5)( a , b ) = ( 2 1 , − 5 ) or ( − 21 , 5 ) (-21,5)( − 2 1 , 5 ) . Thus v = − 15 + 7 i ± ( 21 − 5 i ) v=-15+7 i \pm(21-5 i)v = − 1 5 + 7 i ± ( 2 1 − 5 i ) , so v = 6 + 2 i v=6+2 iv = 6 + 2 i or − 36 + 12 i -36+12 i− 3 6 + 1 2 i . Thus the smallest possible value of ∣ z w ∣ 2 |z w|^{2}∣ z w ∣ 2 is 6 2 + 2 2 = 40 6^{2}+2^{2}=\boxed{40}6 2 + 2 2 = 4 0 ​ , and this value is attained when w = 2 + 4 i w=2+4 iw = 2 + 4 i and z = 1 − i z=1-iz = 1 − i .
The problems on this page are the property of the MAA's American Mathematics Competitions