Problem:
For distinct complex numbers z 1 , z 2 , β¦ , z 673 z_{1}, z_{2}, \ldots, z_{673}z 1 β , z 2 β , β¦ , z 6 7 3 β , the polynomial
( x β z 1 ) 3 ( x β z 2 ) 3 β― ( x β z 673 ) 3 \left(x-z_{1}\right)^{3}\left(x-z_{2}\right)^{3} \cdots\left(x-z_{673}\right)^{3}
( x β z 1 β ) 3 ( x β z 2 β ) 3 β― ( x β z 6 7 3 β ) 3
can be expressed as x 2019 + 20 x 2018 + 19 x 2017 + g ( x ) x^{2019}+20 x^{2018}+19 x^{2017}+g(x)x 2 0 1 9 + 2 0 x 2 0 1 8 + 1 9 x 2 0 1 7 + g ( x ) , where g ( x ) g(x)g ( x ) is a polynomial with complex coefficients and with degree at most 2016 20162 0 1 6 . The value of
β£ β 1 β€ j < k β€ 673 z j z k β£ \left|\sum_{1 \leq j<k \leq 673} z_{j} z_{k}\right|
β£ β£ β£ β£ β£ β£ β£ β 1 β€ j < k β€ 6 7 3 β β z j β z k β β£ β£ β£ β£ β£ β£ β£ β
can be expressed in the form m n \frac{m}{n}n m β , where m mm and n nn are relatively prime positive integers. Find m + n m+nm + n .
Solution:
Because each root of the polynomial appears with multiplicity 3, Viète's Formulas show that
z 1 + z 2 + β― + z 673 = β 20 3 z_{1}+z_{2}+\cdots+z_{673}=-\frac{20}{3}
z 1 β + z 2 β + β― + z 6 7 3 β = β 3 2 0 β
and
z 1 2 + z 2 2 + β― + z 673 2 = 1 3 ( ( β 20 ) 2 β 2 β
19 ) = 362 3 z_{1}^{2}+z_{2}^{2}+\cdots+z_{673}^{2}=\frac{1}{3}\left((-20)^{2}-2 \cdot 19\right)=\frac{362}{3}
z 1 2 β + z 2 2 β + β― + z 6 7 3 2 β = 3 1 β ( ( β 2 0 ) 2 β 2 β
1 9 ) = 3 3 6 2 β
Then the identity
( β i = 1 673 z i ) 2 = β i = 1 673 z i 2 + 2 ( β 1 β€ j < k β€ 673 z j z k ) \left(\sum_{i=1}^{673} z_{i}\right)^{2}=\sum_{i=1}^{673} z_{i}^{2}+2\left(\sum_{1 \leq j<k \leq 673} z_{j} z_{k}\right)
( i = 1 β 6 7 3 β z i β ) 2 = i = 1 β 6 7 3 β z i 2 β + 2 β β β 1 β€ j < k β€ 6 7 3 β β z j β z k β β β β
shows that
β 1 β€ j < k β€ 673 z j z k = ( β 20 3 ) 2 β 362 3 2 = β 343 9 \sum_{1 \leq j<k \leq 673} z_{j} z_{k}=\frac{\left(-\frac{20}{3}\right)^{2}-\frac{362}{3}}{2}=-\frac{343}{9}
1 β€ j < k β€ 6 7 3 β β z j β z k β = 2 ( β 3 2 0 β ) 2 β 3 3 6 2 β β = β 9 3 4 3 β
The requested sum is 343 + 9 = 352 343+9=3523 4 3 + 9 = 3 5 2 .\
Note that such a polynomial does exist. For example, let z 673 = β 20 3 z_{673}=-\frac{20}{3}z 6 7 3 β = β 3 2 0 β , and for i = 1 , 2 , 3 , β¦ , 336 i=1,2,3, \ldots, 336i = 1 , 2 , 3 , β¦ , 3 3 6 , let
z i = 343 i 9 β j = 1 336 j and z i + 336 = β z i z_{i}=\sqrt{\frac{343 i}{9 \sum_{j=1}^{336} j}} \text { and } \quad z_{i+336}=-z_{i}
z i β = 9 β j = 1 3 3 6 β j 3 4 3 i β β and z i + 3 3 6 β = β z i β
Then
β i = 1 673 z i = β 20 3 and β i = 1 673 z i 2 = 2 β i = 1 336 343 i 9 β j = 1 336 j + ( 20 3 ) 2 = 362 3 \sum_{i=1}^{673} z_{i}=-\frac{20}{3} \quad \text { and } \quad \sum_{i=1}^{673} z_{i}^{2}=2 \sum_{i=1}^{336} \frac{343 i}{9 \sum_{j=1}^{336} j}+\left(\frac{20}{3}\right)^{2}=\frac{362}{3}
i = 1 β 6 7 3 β z i β = β 3 2 0 β and i = 1 β 6 7 3 β z i 2 β = 2 i = 1 β 3 3 6 β 9 β j = 1 3 3 6 β j 3 4 3 i β + ( 3 2 0 β ) 2 = 3 3 6 2 β
as required.
OR \textbf{OR}
OR
There are constants a aa and b bb such that
( x β z 1 ) ( x β z 2 ) ( x β z 3 ) β― ( x β z 673 ) = x 673 + a x 672 + b x 671 + β― β . \left(x-z_{1}\right)\left(x-z_{2}\right)\left(x-z_{3}\right) \cdots\left(x-z_{673}\right)=x^{673}+a x^{672}+b x^{671}+\cdots .
( x β z 1 β ) ( x β z 2 β ) ( x β z 3 β ) β― ( x β z 6 7 3 β ) = x 6 7 3 + a x 6 7 2 + b x 6 7 1 + β― .
Then
( x 673 + a x 672 + b x 671 + β― β ) 3 = x 2019 + 20 x 2018 + 19 x 2017 + β― \left(x^{673}+a x^{672}+b x^{671}+\cdots\right)^{3}=x^{2019}+20 x^{2018}+19 x^{2017}+\cdots
( x 6 7 3 + a x 6 7 2 + b x 6 7 1 + β― ) 3 = x 2 0 1 9 + 2 0 x 2 0 1 8 + 1 9 x 2 0 1 7 + β―
Comparing the x 2018 x^{2018}x 2 0 1 8 and x 2017 x^{2017}x 2 0 1 7 coefficients shows that 3 a = 20 3 a=203 a = 2 0 and 3 a 2 + 3 a^{2}+3 a 2 + 3 b = 19 3 b=193 b = 1 9 . Solving this system yields a = 20 3 a=\frac{20}{3}a = 3 2 0 β and b = β 343 9 b=-\frac{343}{9}b = β 9 3 4 3 β . ViΓ¨te's Formulas then give β£ β 1 β€ j < k β€ 673 z j z k β£ = β£ b β£ = 343 9 \left|\sum_{1 \leq j<k \leq 673} z_{j} z_{k}\right|=|b|=\frac{343}{9}β£ β£ β£ β£ β β 1 β€ j < k β€ 6 7 3 β z j β z k β β£ β£ β£ β£ β = β£ b β£ = 9 3 4 3 β , as above.
The problems on this page are the property of the MAA's American Mathematics Competitions