Problem:
Find the smallest positive integer solution to tan 19 x ∘ = cos 9 6 ∘ + sin 9 6 ∘ cos 9 6 ∘ − sin 9 6 ∘ \tan 19 x^{\circ}=\frac{\cos 96^{\circ}+\sin 96^{\circ}}{\cos 96^{\circ}-\sin 96^{\circ}}tan 1 9 x ∘ = c o s 9 6 ∘ − s i n 9 6 ∘ c o s 9 6 ∘ + s i n 9 6 ∘ .
Solution:
The identity
cos A + sin A cos A − sin A = 1 + tan A 1 − tan A = tan 4 5 ∘ + tan A 1 − tan 4 5 ∘ tan A = tan ( 4 5 ∘ + A ) \frac{\cos A+\sin A}{\cos A-\sin A}=\frac{1+\tan A}{1-\tan A}=\frac{\tan 45^{\circ}+\tan A}{1-\tan 45^{\circ} \tan A}=\tan \left(45^{\circ}+A\right)
cos A − sin A cos A + sin A = 1 − tan A 1 + tan A = 1 − tan 4 5 ∘ tan A tan 4 5 ∘ + tan A = tan ( 4 5 ∘ + A )
implies that the given equation is equivalent to tan 19 x ∘ = tan ( 4 5 ∘ + 9 6 ∘ ) = tan 14 1 ∘ \tan 19 x^{\circ}=\tan \left(45^{\circ}+96^{\circ}\right)=\tan 141^{\circ}tan 1 9 x ∘ = tan ( 4 5 ∘ + 9 6 ∘ ) = tan 1 4 1 ∘ . It follows that 19 x 19 x1 9 x must differ from 141 1411 4 1 by a multiple of 180 1801 8 0 ; that is,
19 x = 141 + 180 y = 19 ( 7 + 9 y ) + ( 8 + 9 y ) 19 x=141+180 y=19(7+9 y)+(8+9 y)
1 9 x = 1 4 1 + 1 8 0 y = 1 9 ( 7 + 9 y ) + ( 8 + 9 y )
for some integer y yy . The smallest positive x xx corresponds to the smallest nonnegative y yy for which 8 + 9 y = 19 z 8+9 y=19 z8 + 9 y = 1 9 z for some positive integer z zz . Solve for y yy to obtain y = 2 z + z − 8 9 y=2 z+\frac{z-8}{9}y = 2 z + 9 z − 8 , from which it follows that the minimum value for z zz is 8 88 . Hence y = 16 y=16y = 1 6 and x = 159 x=\boxed{159}x = 1 5 9 .
OR \textbf{OR}
OR
Because sin 9 6 ∘ = cos 6 ∘ \sin 96^{\circ}=\cos 6^{\circ}sin 9 6 ∘ = cos 6 ∘ , the given equation is equivalent to
tan 19 x ∘ = cos 9 6 ∘ + cos 6 ∘ cos 9 6 ∘ − cos 6 ∘ \tan 19 x^{\circ}=\frac{\cos 96^{\circ}+\cos 6^{\circ}}{\cos 96^{\circ}-\cos 6^{\circ}}
tan 1 9 x ∘ = cos 9 6 ∘ − cos 6 ∘ cos 9 6 ∘ + cos 6 ∘
The identities
cos ( A + B ) + cos ( A − B ) = 2 cos A cos B \cos (A+B)+\cos (A-B)=2 \cos A \cos B
cos ( A + B ) + cos ( A − B ) = 2 cos A cos B
and
cos ( A + B ) − cos ( A − B ) = − 2 sin A sin B \cos (A+B)-\cos (A-B)=-2 \sin A \sin B
cos ( A + B ) − cos ( A − B ) = − 2 sin A sin B
imply that
cos 9 6 ∘ + cos 6 ∘ cos 9 6 ∘ − cos 6 ∘ = 2 cos 5 1 ∘ cos 4 5 ∘ − 2 sin 5 1 ∘ sin 4 5 ∘ = − sin 3 9 ∘ cos 3 9 ∘ \frac{\cos 96^{\circ}+\cos 6^{\circ}}{\cos 96^{\circ}-\cos 6^{\circ}}=\frac{2 \cos 51^{\circ} \cos 45^{\circ}}{-2 \sin 51^{\circ} \sin 45^{\circ}}=-\frac{\sin 39^{\circ}}{\cos 39^{\circ}}
cos 9 6 ∘ − cos 6 ∘ cos 9 6 ∘ + cos 6 ∘ = − 2 sin 5 1 ∘ sin 4 5 ∘ 2 cos 5 1 ∘ cos 4 5 ∘ = − cos 3 9 ∘ sin 3 9 ∘
It follows that the given equation is equivalent to
tan 19 x ∘ = − tan 3 9 ∘ = tan 14 1 ∘ \tan 19 x^{\circ}=-\tan 39^{\circ}=\tan 141^{\circ}
tan 1 9 x ∘ = − tan 3 9 ∘ = tan 1 4 1 ∘
The solution continues as above.
OR \textbf{OR}
OR
Notice that A cos x + B sin x A \cos x+B \sin xA cos x + B sin x is equivalent to C cos ( x − ϕ ) C \cos (x-\phi)C cos ( x − ϕ ) , where C 2 = A 2 + B 2 C^{2}=A^{2}+B^{2}C 2 = A 2 + B 2 , A = C cos ϕ A=C \cos \phiA = C cos ϕ , and B = C sin ϕ B=C \sin \phiB = C sin ϕ . Hence the given equation is equivalent to
tan 19 x ∘ = 2 cos ( 9 6 ∘ − 4 5 ∘ ) 2 cos ( 9 6 ∘ + 4 5 ∘ ) = cos 5 1 ∘ cos 14 1 ∘ = sin 14 1 ∘ cos 14 1 ∘ = tan 14 1 ∘ \tan 19 x^{\circ}=\frac{\sqrt{2} \cos \left(96^{\circ}-45^{\circ}\right)}{\sqrt{2} \cos \left(96^{\circ}+45^{\circ}\right)}=\frac{\cos 51^{\circ}}{\cos 141^{\circ}}=\frac{\sin 141^{\circ}}{\cos 141^{\circ}}=\tan 141^{\circ}
tan 1 9 x ∘ = 2 cos ( 9 6 ∘ + 4 5 ∘ ) 2 cos ( 9 6 ∘ − 4 5 ∘ ) = cos 1 4 1 ∘ cos 5 1 ∘ = cos 1 4 1 ∘ sin 1 4 1 ∘ = tan 1 4 1 ∘
The solution continues as before.
The problems on this page are the property of the MAA's American Mathematics Competitions