Problem:
Let
P ( x ) = 24 x 24 + ∑ j = 1 23 ( 24 − j ) ( x 24 − j + x 24 + j ) P(x)=24 x^{24}+\sum_{j=1}^{23}(24-j)\left(x^{24-j}+x^{24+j}\right)
P ( x ) = 2 4 x 2 4 + j = 1 ∑ 2 3 ( 2 4 − j ) ( x 2 4 − j + x 2 4 + j )
Let z 1 , z 2 , … , z r z_{1}, z_{2}, \ldots, z_{r}z 1 , z 2 , … , z r be the distinct zeros of P ( x ) P(x)P ( x ) , and let z k 2 = a k + b k i z_{k}^{2}=a_{k}+b_{k} iz k 2 = a k + b k i for k = 1 , 2 , … , r k=1,2, \ldots, rk = 1 , 2 , … , r , where i = − 1 i=\sqrt{-1}i = − 1 , and a k a_{k}a k and b k b_{k}b k are real numbers. Let
∑ k = 1 r ∣ b k ∣ = m + n p \sum_{k=1}^{r}\left|b_{k}\right|=m+n \sqrt{p}
k = 1 ∑ r ∣ b k ∣ = m + n p
where m , n m, nm , n , and p pp are integers and p pp is not divisible by the square of any prime. Find m + n + p m+n+pm + n + p .
Solution:
Note that
P ( x ) = x + 2 x 2 + 3 x 3 + ⋯ + 24 x 24 + 23 x 25 + 22 x 26 + ⋯ + 2 x 46 + x 47 P(x)=x+2 x^{2}+3 x^{3}+\cdots+24 x^{24}+23 x^{25}+22 x^{26}+\cdots+2 x^{46}+x^{47}
P ( x ) = x + 2 x 2 + 3 x 3 + ⋯ + 2 4 x 2 4 + 2 3 x 2 5 + 2 2 x 2 6 + ⋯ + 2 x 4 6 + x 4 7
and
x P ( x ) = x 2 + 2 x 3 + 3 x 4 + ⋯ + 24 x 25 + 23 x 26 + ⋯ + 2 x 47 + x 48 x P(x)=\quad x^{2}+2 x^{3}+3 x^{4}+\cdots \quad+24 x^{25}+23 x^{26}+\cdots+\quad 2x^{47}+x^{48}
x P ( x ) = x 2 + 2 x 3 + 3 x 4 + ⋯ + 2 4 x 2 5 + 2 3 x 2 6 + ⋯ + 2 x 4 7 + x 4 8
So
( 1 − x ) P ( x ) = x + x 2 + ⋯ + x 24 − ( x 25 + x 26 + ⋯ + x 47 + x 48 ) = ( 1 − x 24 ) ( x + x 2 + ⋯ + x 24 ) \begin{aligned}
(1-x) P(x)=x+x^{2}+\cdots+x^{24}-\left(x^{25}+x^{26}+\cdots+x^{47}+x^{48}\right) \\ \quad=\left(1-x^{24}\right)\left(x+x^{2}+\cdots+x^{24}\right)
\end{aligned}
( 1 − x ) P ( x ) = x + x 2 + ⋯ + x 2 4 − ( x 2 5 + x 2 6 + ⋯ + x 4 7 + x 4 8 ) = ( 1 − x 2 4 ) ( x + x 2 + ⋯ + x 2 4 )
Then, for x ≠ 1 x \neq 1x = 1 ,
P ( x ) = x 24 − 1 x − 1 x ( 1 + x + ⋯ + x 23 ) = x ( x 24 − 1 x − 1 ) 2 (*) \begin{aligned}P(x) =\frac{x^{24}-1}{x-1} x\left(1+x+\cdots+x^{23}\right) \\=x\left(\frac{x^{24}-1}{x-1}\right)^{2} \tag{*}\end{aligned}
P ( x ) = x − 1 x 2 4 − 1 x ( 1 + x + ⋯ + x 2 3 ) = x ( x − 1 x 2 4 − 1 ) 2 ( * )
One zero of P ( x ) P(x)P ( x ) is 0 00 , which does not contribute to the requested sum. The remaining zeros of P ( x ) P(x)P ( x ) are the same as those of ( x 24 − 1 ) 2 \left(x^{24}-1\right)^{2}( x 2 4 − 1 ) 2 , excluding 1 11 . Because ( x 24 − 1 ) 2 \left(x^{24}-1\right)^{2}( x 2 4 − 1 ) 2 and x 24 − 1 x^{24}-1x 2 4 − 1 have the same distinct zeros, the remaining zeros of P ( x ) P(x)P ( x ) can be expressed as z k = z_{k}=z k = cis 15 k ∘ 15 k^{\circ}1 5 k ∘ for k = 1 , 2 , 3 , ⋯ , 23 k=1,2,3, \cdots, 23k = 1 , 2 , 3 , ⋯ , 2 3 . The squares of the zeros are therefore of the form cis 30 k ∘ 30 k^{\circ}3 0 k ∘ , and the requested sum is
∑ k = 1 23 ∣ sin 30 k ∘ ∣ = 4 ∑ k = 1 5 ∣ sin 30 k ∘ ∣ = 4 ( 2 ⋅ ( 1 / 2 ) + 2 ⋅ ( 3 / 2 ) + 1 ) = 8 + 4 3 \sum_{k=1}^{23}\left|\sin 30 k^{\circ}\right|=4 \sum_{k=1}^{5}\left|\sin 30 k^{\circ}\right|=4(2 \cdot(1 / 2)+2 \cdot(\sqrt{3} / 2)+1)=8+4 \sqrt{3}
k = 1 ∑ 2 3 ∣ sin 3 0 k ∘ ∣ = 4 k = 1 ∑ 5 ∣ sin 3 0 k ∘ ∣ = 4 ( 2 ⋅ ( 1 / 2 ) + 2 ⋅ ( 3 / 2 ) + 1 ) = 8 + 4 3
Thus m + n + p = 15 m+n+p=\boxed{15}m + n + p = 1 5 .
Note: the expression ( ∗ ) (*)( ∗ ) can also be obtained using the identity
( 1 + x + x 2 + ⋯ + x n ) 2 = 1 + 2 x + 3 x 2 + ⋯ + ( n + 1 ) x n + ⋯ + 3 x 2 n − 2 + 2 x 2 n − 1 + x 2 n \left(1+x+x^{2}+\cdots+x^{n}\right)^{2}=1+2 x+3 x^{2}+\cdots+(n+1) x^{n}+\cdots+3 x^{2 n-2}+2 x^{2 n-1}+x^{2 n}
( 1 + x + x 2 + ⋯ + x n ) 2 = 1 + 2 x + 3 x 2 + ⋯ + ( n + 1 ) x n + ⋯ + 3 x 2 n − 2 + 2 x 2 n − 1 + x 2 n
The problems on this page are the property of the MAA's American Mathematics Competitions