Problem:
Find a x 5 + b y 5 a x^{5}+b y^{5}a x 5 + b y 5 if the real numbers a , b , x a, b, xa , b , x and y yy satisfy the equations
a x + b y = 3 , a x 2 + b y 2 = 7 , a x 3 + b y 3 = 16 , a x 4 + b y 4 = 42 a x+b y=3, \quad a x^{2}+b y^{2}=7, \quad a x^{3}+b y^{3}=16, \quad a x^{4}+b y^{4}=42
a x + b y = 3 , a x 2 + b y 2 = 7 , a x 3 + b y 3 = 1 6 , a x 4 + b y 4 = 4 2
Solution:
For n = 1 n=1n = 1 and n = 2 n=2n = 2 , the identity
( a x n + 1 + b y n + 1 ) ( x + y ) − ( a x n + b y n ) x y = a x n + 2 + b y n + 2 (1) \left(a x^{n+1}+b y^{n+1}\right)(x+y)-\left(a x^{n}+b y^{n}\right) x y=a x^{n+2}+b y^{n+2} \tag{1}
( a x n + 1 + b y n + 1 ) ( x + y ) − ( a x n + b y n ) x y = a x n + 2 + b y n + 2 ( 1 )
yields the equations
7 ( x + y ) − 3 x y = 16 and 16 ( x + y ) − 7 x y = 42 7(x+y)-3 x y=16 \quad \text { and } \quad 16(x+y)-7 x y=42
7 ( x + y ) − 3 x y = 1 6 and 1 6 ( x + y ) − 7 x y = 4 2
Solving these last two equations simultaneously, one finds that
x + y = − 14 and x y = − 38 (2) x+y=-14 \quad \text { and } \quad x y=-38 \tag{2}
x + y = − 1 4 and x y = − 3 8 ( 2 )
Applying ( 1 ) (1)( 1 ) with n = 3 n=3n = 3 then gives
a x 5 + b y 5 = ( 42 ) ( − 14 ) − ( 16 ) ( − 38 ) = − 588 + 608 = 20 a x^{5}+b y^{5}=(42)(-14)-(16)(-38)=-588+608=\boxed{20}
a x 5 + b y 5 = ( 4 2 ) ( − 1 4 ) − ( 1 6 ) ( − 3 8 ) = − 5 8 8 + 6 0 8 = 2 0 ​
Note: From ( 2 ) (2)( 2 ) we can solve for x xx and y yy . We obtain x = − 7 ± 87 x=-7 \pm \sqrt{87}x = − 7 ± 8 7 ​ and y = − 7 ∓ 87 y=-7 \mp \sqrt{87}y = − 7 ∓ 8 7 ​ , from which a = 49 76 ± 457 6612 87 a=\frac{49}{76} \pm \frac{457}{6612} \sqrt{87}a = 7 6 4 9 ​ ± 6 6 1 2 4 5 7 ​ 8 7 ​ and b = 49 76 ∓ 457 6612 87 b=\frac{49}{76} \mp \frac{457}{6612} \sqrt{87}b = 7 6 4 9 ​ ∓ 6 6 1 2 4 5 7 ​ 8 7 ​ .
The problems on this page are the property of the MAA's American Mathematics Competitions