Problem:
Define
P ( x ) = ( x − 1 2 ) ( x − 2 2 ) ⋯ ( x − 10 0 2 ) P(x)=\left(x-1^{2}\right)\left(x-2^{2}\right) \cdots\left(x-100^{2}\right)
P ( x ) = ( x − 1 2 ) ( x − 2 2 ) ⋯ ( x − 1 0 0 2 )
How many integers n nn are there such that P ( n ) ≤ 0 P(n) \leq 0P ( n ) ≤ 0 ?
Answer Choices:
A. 4900 49004 9 0 0
B. 4950 49504 9 5 0
C. 5000 50005 0 0 0
D. 5050 50505 0 5 0
E. 5100 51005 1 0 0
Solution:
We perform casework on P ( n ) ≤ 0 P(n) \leq 0P ( n ) ≤ 0 :
P ( n ) = 0 P(n)=0P ( n ) = 0 In this case, there are 100 1001 0 0 such integers n nn
1 2 , 2 2 , 3 2 , … , 10 0 2 1^{2}, 2^{2}, 3^{2}, \ldots, 100^{2}
1 2 , 2 2 , 3 2 , … , 1 0 0 2
Interval of x # of Negative Factors Valid? ( − ∞ , 1 2 ) 100 ( 1 2 , 2 2 ) ′ 99 ✓ ( 2 2 , 3 2 ) 98 ( 3 2 , 4 2 ) 97 ✓ ( 4 2 , 5 2 ) 96 ( 5 2 , 6 2 ) 95 ✓ ( 6 2 , 7 2 ) 94 ( 9 9 2 10 0 2 ) 1 j ( 10 0 2 ⋅ ∞ ) 0 \begin{array}{|c|c|c|c|}
\hline
& \text{Interval of } \boldsymbol{x} & \# \text{ of Negative Factors} & \text{Valid?} \\
\hline
& (-\infty, 1^{2}) & 100 & \\
\hline
& (1^{2}, 2^{2})^{\prime} & 99 & \checkmark \\
\hline
& \left(2^{2}, 3^{2}\right) & 98 \\
\hline
& \left(3^{2}, 4^{2}\right) & 97 & \checkmark \\
\hline
& \left(4^{2}, 5^{2}\right) & 96 \\
\hline
& \left(5^{2}, 6^{2}\right) & 95 & \checkmark \\
\hline
& \left(6^{2}, 7^{2}\right) & 94 \\
\hline
& \left(99^{2} 100^{2}\right) & 1 & j \\
\hline
& \left(100^{2} \cdot \infty\right) & 0 & \\
\hline
\end{array}
Interval of x ( − ∞ , 1 2 ) ( 1 2 , 2 2 ) ′ ( 2 2 , 3 2 ) ( 3 2 , 4 2 ) ( 4 2 , 5 2 ) ( 5 2 , 6 2 ) ( 6 2 , 7 2 ) ( 9 9 2 1 0 0 2 ) ( 1 0 0 2 ⋅ ∞ ) # of Negative Factors 1 0 0 9 9 9 8 9 7 9 6 9 5 9 4 1 0 Valid? ✓ ✓ ✓ j
P ( n ) < 0 P(n)<0P ( n ) < 0 There are 100 1001 0 0 factors in P ( x ) P(x)P ( x ) , and we need an odd number of them to be negative. We construct
Note that there are 50 505 0 valid intervals of x xx . We count the integers in these intervals:
( 2 2 − 1 2 − 1 ) + ( 4 2 − 3 2 − 1 ) + ( 6 2 − 5 2 − 1 ) + ⋯ + ( 10 0 2 − 9 9 2 − 1 ) = ( 2 2 − 1 2 ) ⏟ ( 2 + 1 ) ( 2 − 1 ) + ( 4 2 − 3 2 ) ⏟ ( 4 + 3 ) ( 4 − 3 ) + ( 6 2 − 5 2 ) ⏟ ( 6 + 5 ) ( 6 − 5 ) + ⋯ + ( 10 0 2 − 9 9 2 ) ⏟ ( 100 + 99 ) ( 100 − 99 ) − 50 = ( 2 + 1 ) + ( 4 + 3 ) + ( 6 + 5 ) + ⋯ + ( 100 + 99 ) ⏟ 1 + 2 + 3 + 4 + 5 + 6 + ⋯ + 99 + 100 − 50 = 101 ( 100 ) 2 − 50 = 5000 \begin{aligned}
&\left(2^{2}-1^{2}-1\right)+\left(4^{2}-3^{2}-1\right)+\left(6^{2}-5^{2}-1\right)+\cdots+\left(100^{2}-99^{2}-1\right) \\
&=\underbrace{\left(2^{2}-1^{2}\right)}_{(2+1)(2-1)}+\underbrace{\left(4^{2}-3^{2}\right)}_{(4+3)(4-3)}+\underbrace{\left(6^{2}-5^{2}\right)}_{(6+5)(6-5)}+\cdots+\underbrace{\left(100^{2}-99^{2}\right)}_{(100+99)(100-99)}-50 \\
&=\underbrace{(2+1)+(4+3)+(6+5)+\cdots+(100+99)}_{1+2+3+4+5+6+\cdots+99+100}-50 \\
&=\dfrac{101(100)}{2}-50 \\
&=5000
\end{aligned}
( 2 2 − 1 2 − 1 ) + ( 4 2 − 3 2 − 1 ) + ( 6 2 − 5 2 − 1 ) + ⋯ + ( 1 0 0 2 − 9 9 2 − 1 ) = ( 2 + 1 ) ( 2 − 1 ) ( 2 2 − 1 2 ) + ( 4 + 3 ) ( 4 − 3 ) ( 4 2 − 3 2 ) + ( 6 + 5 ) ( 6 − 5 ) ( 6 2 − 5 2 ) + ⋯ + ( 1 0 0 + 9 9 ) ( 1 0 0 − 9 9 ) ( 1 0 0 2 − 9 9 2 ) − 5 0 = 1 + 2 + 3 + 4 + 5 + 6 + ⋯ + 9 9 + 1 0 0 ( 2 + 1 ) + ( 4 + 3 ) + ( 6 + 5 ) + ⋯ + ( 1 0 0 + 9 9 ) − 5 0 = 2 1 0 1 ( 1 0 0 ) − 5 0 = 5 0 0 0
In this case, there are 5000 50005 0 0 0 such integers n nn .
Together, the answer is 100 + 5000 = ( E ) 5100 100+5000=\boxed{(E) \ 5100}1 0 0 + 5 0 0 0 = ( E ) 5 1 0 0 .
OR \textbf{OR}
OR
Notice that P ( x ) P(x)P ( x ) is nonpositive when x xx is between 10 0 2 100^{2}1 0 0 2 and 9 9 2 , 9 8 2 99^{2}, 98^{2}9 9 2 , 9 8 2 and 9 7 2 , ⋯ , 2 2 97^{2}, \cdots, 2^{2}9 7 2 , ⋯ , 2 2 and 1 2 1^{2}1 2 (inclusive), because there are an odd number of negatives, which means that the number of values equals
( ( 100 + 99 ) ( 100 − 99 ) + 1 ) + ( ( 98 + 97 ) ( 98 − 97 ) + 1 ) + ⋯ + ( ( 2 + 1 ) ( 2 − 1 ) + 1 ) ((100+99)(100-99)+1)+((98+97)(98-97)+1)+\cdots+((2+1)(2-1)+1)
( ( 1 0 0 + 9 9 ) ( 1 0 0 − 9 9 ) + 1 ) + ( ( 9 8 + 9 7 ) ( 9 8 − 9 7 ) + 1 ) + ⋯ + ( ( 2 + 1 ) ( 2 − 1 ) + 1 )
This reduces to
200 + 196 + 192 + ⋯ + 4 = 4 ( 1 + 2 + ⋯ + 50 ) = 4 ⋅ 50 ⋅ 51 2 = ( E ) 5100 200+196+192+\cdots+4=4(1+2+\cdots+50)=4 \cdot \dfrac{50 \cdot 51}{2}=\text {} \boxed{(E) \ 5100}
2 0 0 + 1 9 6 + 1 9 2 + ⋯ + 4 = 4 ( 1 + 2 + ⋯ + 5 0 ) = 4 ⋅ 2 5 0 ⋅ 5 1 = ( E ) 5 1 0 0
The problems on this page are the property of the MAA's American Mathematics Competitions