Problem:
The Fibonacci numbers are defined by F 1 = 1 , F 2 = 1 F_{1}=1, F_{2}=1F 1 ​ = 1 , F 2 ​ = 1 , and F n = F n − 1 + F n − 2 F_{n}=F_{n-1}+F_{n-2}F n ​ = F n − 1 ​ + F n − 2 ​ for n ≥ 3 n \geq 3n ≥ 3 . What is
F 2 F 1 + F 4 F 2 + F 6 F 3 + ⋯ + F 20 F 10 ? \frac{F_{2}}{F_{1}}+\frac{F_{4}}{F_{2}}+\frac{F_{6}}{F_{3}}+\cdots+\frac{F_{20}}{F_{10}} ?
F 1 ​ F 2 ​ ​ + F 2 ​ F 4 ​ ​ + F 3 ​ F 6 ​ ​ + ⋯ + F 1 0 ​ F 2 0 ​ ​ ?
Answer Choices:
A. 318 3183 1 8
B. 319 3193 1 9
C. 320 3203 2 0
D. 321 3213 2 1
E. 322 3223 2 2
Solution:
1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144 , 233 , 377 , 610 , 987 , 1597 , 2584 , 4181 , 6765 , … , 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765, \ldots,
1 , 1 , 2 , 3 , 5 , 8 , 1 3 , 2 1 , 3 4 , 5 5 , 8 9 , 1 4 4 , 2 3 3 , 3 7 7 , 6 1 0 , 9 8 7 , 1 5 9 7 , 2 5 8 4 , 4 1 8 1 , 6 7 6 5 , … ,
so the given sum is
1 1 + 3 1 + 8 2 + 21 3 + 55 5 + 144 8 + 377 13 + 987 21 + 2584 34 + 6765 55 \frac{1}{1}+\frac{3}{1}+\frac{8}{2}+\frac{21}{3}+\frac{55}{5}+\frac{144}{8}+\frac{377}{13}+\frac{987}{21}+\frac{2584}{34}+\frac{6765}{55}
1 1 ​ + 1 3 ​ + 2 8 ​ + 3 2 1 ​ + 5 5 5 ​ + 8 1 4 4 ​ + 1 3 3 7 7 ​ + 2 1 9 8 7 ​ + 3 4 2 5 8 4 ​ + 5 5 6 7 6 5 ​
which equals 1 + 3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 = ( B ) 319 1+3+4+7+11+18+29+47+76+123=(\text{B})\boxed{319}1 + 3 + 4 + 7 + 1 1 + 1 8 + 2 9 + 4 7 + 7 6 + 1 2 3 = ( B ) 3 1 9 ​ .
OR \textbf{OR}
OR
The Fibonacci sequence starts out 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 1,1,2,3,5,8,13,21,34,551 , 1 , 2 , 3 , 5 , 8 , 1 3 , 2 1 , 3 4 , 5 5 , so the given sum starts out
1 1 + 3 1 + 8 2 + 21 3 + 55 5 = 1 + 3 + 4 + 7 + 11 \frac{1}{1}+\frac{3}{1}+\frac{8}{2}+\frac{21}{3}+\frac{55}{5}=1+3+4+7+11
1 1 ​ + 1 3 ​ + 2 8 ​ + 3 2 1 ​ + 5 5 5 ​ = 1 + 3 + 4 + 7 + 1 1
It appears that these summands satisfy the same recurrence relation, namely
F 2 n F n = F 2 ( n − 1 ) F n − 1 + F 2 ( n − 2 ) F n − 2 \frac{F_{2 n}}{F_{n}}=\frac{F_{2(n-1)}}{F_{n-1}}+\frac{F_{2(n-2)}}{F_{n-2}}
F n ​ F 2 n ​ ​ = F n − 1 ​ F 2 ( n − 1 ) ​ ​ + F n − 2 ​ F 2 ( n − 2 ) ​ ​
With the initial conditions 1,3 instead of 1 , 1 , the sequence
( L n ) = ( F 2 n F n ) \left(L_{n}\right)=\left(\frac{F_{2 n}}{F_{n}}\right)
( L n ​ ) = ( F n ​ F 2 n ​ ​ )
is known as the Lucas sequence. If the recurrence above is correct, then the required sum is
1 + 3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 = 319 1+3+4+7+11+18+29+47+76+123=319
1 + 3 + 4 + 7 + 1 1 + 1 8 + 2 9 + 4 7 + 7 6 + 1 2 3 = 3 1 9
To prove the identity for ( L n ) \left(L_{n}\right)( L n ​ ) displayed above, recall Binet's formula, F n = 1 5 ( ϕ n − ψ n ) F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\psi^{n}\right)F n ​ = 5 ​ 1 ​ ( ϕ n − ψ n ) , where ϕ = 1 + 5 2 \phi=\frac{1+\sqrt{5}}{2}ϕ = 2 1 + 5 ​ ​ and ψ = 1 − 5 2 \psi=\frac{1-\sqrt{5}}{2}ψ = 2 1 − 5 ​ ​ are the roots of the polynomial x 2 − x − 1 x^{2}-x-1x 2 − x − 1 . Then
L n = F 2 n F n = ϕ 2 n − ψ 2 n ϕ n − ψ n = ϕ n + ψ n . L_{n}=\frac{F_{2 n}}{F_{n}}=\frac{\phi^{2 n}-\psi^{2 n}}{\phi^{n}-\psi^{n}}=\phi^{n}+\psi^{n} .
L n ​ = F n ​ F 2 n ​ ​ = ϕ n − ψ n ϕ 2 n − ψ 2 n ​ = ϕ n + ψ n .
Therefore
L n − 1 + L n − 2 = ϕ n − 1 + ϕ n − 2 + ψ n − 1 + ψ n − 2 = ϕ n − 2 ( ϕ + 1 ) + ψ n − 2 ( ψ + 1 ) = ϕ n − 2 ⋅ ϕ 2 + ψ n − 2 ⋅ ψ 2 = ϕ n + ψ n = L n . \begin{aligned}
L_{n-1}+L_{n-2} & =\phi^{n-1}+\phi^{n-2}+\psi^{n-1}+\psi^{n-2} \\
& =\phi^{n-2}(\phi+1)+\psi^{n-2}(\psi+1) \\
& =\phi^{n-2} \cdot \phi^{2}+\psi^{n-2} \cdot \psi^{2} \\
& =\phi^{n}+\psi^{n}=L_{n} .
\end{aligned}
L n − 1 ​ + L n − 2 ​ ​ = ϕ n − 1 + ϕ n − 2 + ψ n − 1 + ψ n − 2 = ϕ n − 2 ( ϕ + 1 ) + ψ n − 2 ( ψ + 1 ) = ϕ n − 2 ⋅ ϕ 2 + ψ n − 2 ⋅ ψ 2 = ϕ n + ψ n = L n ​ . ​
The problems on this page are the property of the MAA's American Mathematics Competitions