Problem:
The solutions of the equation z 4 + 4 z 3 i − 6 z 2 − 4 z i − i = 0 z^{4}+4 z^{3} i-6 z^{2}-4 z i-i=0z 4 + 4 z 3 i − 6 z 2 − 4 z i − i = 0 are the vertices of a convex polygon in the complex plane. What is the area of the polygon?
Answer Choices:
A. 2 5 8 2^{\frac{5}{8}}2 8 5
B. 2 3 4 2^{\frac{3}{4}}2 4 3
C. 2 22
D. 2 5 4 2^{\frac{5}{4}}2 4 5
E. 2 3 2 2^{\frac{3}{2}}2 2 3
Solution:
Adding 1 + i 1+i1 + i to each side of the given equation gives
1 + i = ( z 4 + 4 z 3 i − 6 z 2 − 4 z i − i ) + 1 + i = z 4 + 4 z 3 i − 6 z 2 − 4 z i + 1 = ( z + i ) 4 1+i=\left(z^{4}+4 z^{3} i-6 z^{2}-4 z i-i\right)+1+i=z^{4}+4 z^{3} i-6 z^{2}-4 z i+1=(z+i)^{4}1 + i = ( z 4 + 4 z 3 i − 6 z 2 − 4 z i − i ) + 1 + i = z 4 + 4 z 3 i − 6 z 2 − 4 z i + 1 = ( z + i ) 4 .
Let w = z + i = r ( cos θ + i sin θ ) w=z+i=r(\cos \theta+i \sin \theta)w = z + i = r ( cos θ + i sin θ ) . Since
i + 1 = 2 ( cos π 4 + i sin π 4 ) i+1=\sqrt{2}\left(\cos \dfrac{\pi}{4}+i \sin \dfrac{\pi}{4}\right)
i + 1 = 2 ( cos 4 π + i sin 4 π )
the solutions of w 4 = 1 + i w^{4}=1+iw 4 = 1 + i satisfy
r 4 = 2 and θ = 1 4 ( π 4 + 2 k π ) = π 16 + π 2 k r^{4}=\sqrt{2} \quad \text { and } \quad \theta=\dfrac{1}{4}\left(\dfrac{\pi}{4}+2 k \pi\right)=\dfrac{\pi}{16}+\dfrac{\pi}{2} k
r 4 = 2 and θ = 4 1 ( 4 π + 2 k π ) = 1 6 π + 2 π k
for k = 0 , 1 , 2 k=0,1,2k = 0 , 1 , 2 , or 3 . Thus
w k = 2 1 / 8 ( cos ( π 16 + π 2 k ) + i sin ( π 16 + π 2 k ) ) for k = 0 , 1 , 2 , or 3 w_{k}=2^{1 / 8}\left(\cos \left(\dfrac{\pi}{16}+\dfrac{\pi}{2} k\right)+i \sin \left(\dfrac{\pi}{16}+\dfrac{\pi}{2} k\right)\right) \quad \text { for } k=0,1,2, \text { or } 3
w k = 2 1 / 8 ( cos ( 1 6 π + 2 π k ) + i sin ( 1 6 π + 2 π k ) ) for k = 0 , 1 , 2 , or 3
and the four solutions for z = w − i z=w-iz = w − i are
z k = 2 1 / 8 ( cos ( π 16 + π 2 k ) + i sin ( π 16 + π 2 k ) ) − i for k = 0 , 1 , 2 , or 3 z_{k}=2^{1 / 8}\left(\cos \left(\dfrac{\pi}{16}+\dfrac{\pi}{2} k\right)+i \sin \left(\dfrac{\pi}{16}+\dfrac{\pi}{2} k\right)\right)-i \quad \text { for } k=0,1,2, \text { or } 3
z k = 2 1 / 8 ( cos ( 1 6 π + 2 π k ) + i sin ( 1 6 π + 2 π k ) ) − i for k = 0 , 1 , 2 , or 3
Note that w 0 , w 1 , w 2 w_{0}, w_{1}, w_{2}w 0 , w 1 , w 2 , and w 3 w_{3}w 3 are equally spaced around the circle of radius 2 1 / 8 2^{1 / 8}2 1 / 8 centered at ( 0 , 0 ) (0,0)( 0 , 0 ) , so z 0 , z 1 , z 2 z_{0}, z_{1}, z_{2}z 0 , z 1 , z 2 , and z 3 z_{3}z 3 are equally spaced around the circle of radius 2 1 / 8 2^{1 / 8}2 1 / 8 centered at ( 0 , − 1 ) (0,-1)( 0 , − 1 ) . Therefore z 0 , z 1 , z 2 z_{0}, z_{1}, z_{2}z 0 , z 1 , z 2 , and z 3 z_{3}z 3 are vertices of a square with side length 2 1 / 8 2 = 2 5 / 8 2^{1 / 8} \sqrt{2}=2^{5 / 8}2 1 / 8 2 = 2 5 / 8 and area ( 2 5 / 8 ) 2 = 2 5 / 4 \left(2^{5 / 8}\right)^{2}= \boxed{2^{5 / 4}}( 2 5 / 8 ) 2 = 2 5 / 4 .
OR
The Binomial Theorem gives
( z + i ) 4 = z 4 + 4 z 3 i − 6 z 2 − 4 z i + 1 = ( z 4 + 4 z 3 i − 6 z 2 − 4 z i − i ) + 1 + i = 1 + i (z+i)^{4}=z^{4}+4 z^{3} i-6 z^{2}-4 z i+1=\left(z^{4}+4 z^{3} i-6 z^{2}-4 z i-i\right)+1+i=1+i
( z + i ) 4 = z 4 + 4 z 3 i − 6 z 2 − 4 z i + 1 = ( z 4 + 4 z 3 i − 6 z 2 − 4 z i − i ) + 1 + i = 1 + i
Let a aa satisfy a 4 = 1 + i a^{4}=1+ia 4 = 1 + i , and let w = z + i w=z+iw = z + i . Then w 4 = a 4 w^{4}=a^{4}w 4 = a 4 , so the possible values for w ww are a , i a , − a a, i a,-aa , i a , − a , and − i a -i a− i a , which are the vertices of a square with diagonal 2 ∣ a ∣ = 2 2 8 2|a|=2 \sqrt[8]{2}2 ∣ a ∣ = 2 8 2 . The transformation w = z + i w=z+iw = z + i is a translation, so it preserves area. Hence the area of the original polygon is ( 2 2 8 ) 2 / 2 = 2 2 4 = 2 5 / 4 (2 \sqrt[8]{2})^{2} / 2=2 \sqrt[4]{2}=\boxed{2^{5 / 4}}( 2 8 2 ) 2 / 2 = 2 4 2 = 2 5 / 4 .
The problems on this page are the property of the MAA's American Mathematics Competitions