Problem:
All three vertices of an equilateral triangle are on the parabola y = x 2 y=x^{2}y = x 2 , and one of its sides has a slope of 2 22 . The x xx -coordinates of the three vertices have a sum of m / n m / nm / n , where m mm and n nn are relatively prime positive integers. What is the value of m + n m+nm + n ?
Answer Choices:
A. 14 141 4
B. 15 151 5
C. 16 161 6
D. 17 171 7
E. 18 181 8
Solution:
Suppose that the triangle has vertices A ( a , a 2 ) , B ( b , b 2 ) A\left(a, a^{2}\right), B\left(b, b^{2}\right)A ( a , a 2 ) , B ( b , b 2 ) and C ( c , c 2 ) C\left(c, c^{2}\right)C ( c , c 2 ) . The slope of line segment A B ‾ \overline{A B}A B is
b 2 − a 2 b − a = b + a \dfrac{b^{2}-a^{2}}{b-a}=b+a
b − a b 2 − a 2 = b + a
so the slopes of the three sides of the triangle have a sum
( b + a ) + ( c + b ) + ( a + c ) = 2 ⋅ m n (b+a)+(c+b)+(a+c)=2 \cdot \dfrac{m}{n}
( b + a ) + ( c + b ) + ( a + c ) = 2 ⋅ n m
The slope of one side is 2 = tan θ 2=\tan \theta2 = tan θ , for some angle θ \thetaθ , and the two remaining sides have slopes
tan ( θ ± π 3 ) = tan θ ± tan ( π / 3 ) 1 ∓ tan θ tan ( π / 3 ) = 2 ± 3 1 ∓ 2 3 = − 8 ± 5 3 11 \tan \left(\theta \pm \dfrac{\pi}{3}\right)=\dfrac{\tan \theta \pm \tan (\pi / 3)}{1 \mp \tan \theta \tan (\pi / 3)}=\dfrac{2 \pm \sqrt{3}}{1 \mp 2 \sqrt{3}}=-\dfrac{8 \pm 5 \sqrt{3}}{11}
tan ( θ ± 3 π ) = 1 ∓ tan θ tan ( π / 3 ) tan θ ± tan ( π / 3 ) = 1 ∓ 2 3 2 ± 3 = − 1 1 8 ± 5 3
Therefore
m n = 1 2 ( 2 − 8 + 5 3 11 − 8 − 5 3 11 ) = 3 11 \dfrac{m}{n}=\dfrac{1}{2}\left(2-\dfrac{8+5 \sqrt{3}}{11}-\dfrac{8-5 \sqrt{3}}{11}\right)=\dfrac{3}{11}
n m = 2 1 ( 2 − 1 1 8 + 5 3 − 1 1 8 − 5 3 ) = 1 1 3
and m + n = 14 m+n=14m + n = 1 4 .
Such a triangle exists. The x xx -coordinates of its vertices are ( 11 ± 5 3 ) / 11 (11 \pm 5 \sqrt{3}) / 11( 1 1 ± 5 3 ) / 1 1 and − 19 / 11 -19 / 11− 1 9 / 1 1 .
\section*{OR}
Define the vertices as in the first solution, with the added stipulations that a < b a<ba < b and A B ‾ \overline{A B}A B has slope 2 . Then
2 = b 2 − a 2 b − a = b + a , so a = 1 − k and b = 1 + k 2=\dfrac{b^{2}-a^{2}}{b-a}=b+a, \quad \text { so } \quad a=1-k \text { and } b=1+k
2 = b − a b 2 − a 2 = b + a , so a = 1 − k and b = 1 + k
for some k > 0 k>0k > 0 . If D DD is the midpoint of A B ‾ \overline{A B}A B , then
D = ( 1 , ( 1 − k ) 2 + ( 1 + k ) 2 2 ) = ( 1 , 1 + k 2 ) D=\left(1, \dfrac{(1-k)^{2}+(1+k)^{2}}{2}\right)=\left(1,1+k^{2}\right)
D = ( 1 , 2 ( 1 − k ) 2 + ( 1 + k ) 2 ) = ( 1 , 1 + k 2 )
The slope of the altitude C D ‾ \overline{C D}C D is − 1 / 2 -1 / 2− 1 / 2 , so
1 − c = 2 ( c 2 − 1 − k 2 ) 1-c=2\left(c^{2}-1-k^{2}\right)
1 − c = 2 ( c 2 − 1 − k 2 )
Therefore
C D 2 = ( 1 − c ) 2 + ( c 2 − 1 − k 2 ) 2 = 5 4 ( 1 − c ) 2 C D^{2}=(1-c)^{2}+\left(c^{2}-1-k^{2}\right)^{2}=\dfrac{5}{4}(1-c)^{2}
C D 2 = ( 1 − c ) 2 + ( c 2 − 1 − k 2 ) 2 = 4 5 ( 1 − c ) 2
Because △ A B C \triangle A B C△ A B C is equilateral, we also have
C D 2 = 3 4 A B 2 = 3 4 ( ( 2 k ) 2 + ( 4 k ) 2 ) = 15 k 2 C D^{2}=\dfrac{3}{4} A B^{2}=\dfrac{3}{4}\left((2 k)^{2}+(4 k)^{2}\right)=15 k^{2}
C D 2 = 4 3 A B 2 = 4 3 ( ( 2 k ) 2 + ( 4 k ) 2 ) = 1 5 k 2
Hence
5 4 ( 1 − c ) 2 = 15 k 2 , so k 2 = ( 1 − c ) 2 12 \dfrac{5}{4}(1-c)^{2}=15 k^{2}, \quad \text { so } \quad k^{2}=\dfrac{(1-c)^{2}}{12}
4 5 ( 1 − c ) 2 = 1 5 k 2 , so k 2 = 1 2 ( 1 − c ) 2
Substitution into the equation 1 − c = 2 ( c 2 − 1 − k 2 ) 1-c=2\left(c^{2}-1-k^{2}\right)1 − c = 2 ( c 2 − 1 − k 2 ) yields c = 1 c=1c = 1 or c = − 19 / 11 c=-19 / 11c = − 1 9 / 1 1 . Because c < 1 c<1c < 1 , it follows that
a + b + c = 2 − 19 11 = 3 11 = m n , so m + n = 14 a+b+c=2-\dfrac{19}{11}=\dfrac{3}{11}=\dfrac{m}{n}, \quad \text { so } \quad m+n= \boxed{14}
a + b + c = 2 − 1 1 1 9 = 1 1 3 = n m , so m + n = 1 4
The problems on this page are the property of the MAA's American Mathematics Competitions