Problem:
A triangle in the coordinate plane has vertices A ( 2 1 , 2 2 ) , B ( 2 3 , 2 4 ) A\left(\log _{2} 1, \log _{2} 2\right), B\left(\log _{2} 3, \log _{2} 4\right)A ( log 2 1 , log 2 2 ) , B ( log 2 3 , log 2 4 ) , and C ( 2 7 , 2 8 ) C\left(\log _{2} 7, \log _{2} 8\right)C ( log 2 7 , log 2 8 ) . What is the area of △ A B C \triangle A B C△ A B C ?
Answer Choices:
A. 2 3 7 \log _{2} \frac{\sqrt{3}}{7}log 2 7 3
B. 2 3 7 \log _{2} \frac{3}{\sqrt{7}}log 2 7 3
C. 2 7 3 \log _{2} \frac{7}{\sqrt{3}}log 2 3 7
D. 2 11 7 \log _{2} \frac{11}{\sqrt{7}}log 2 7 1 1
E. 2 11 3 \log _{2} \frac{11}{\sqrt{3}}log 2 3 1 1
Solution:
Circumscribe △ A B C \triangle A B C△ A B C by rectangle A G C D A G C DA G C D , with D DD on the y yy -axis, and project point B BB onto A G ‾ \overline{A G}A G and C G ‾ \overline{C G}C G , producing points E EE and F FF , respectively, as shown in the figure below.
The area of rectangle A G C D A G C DA G C D is 2 2 7 2 \log _{2} 72 log 2 7 , so the area of △ A C G \triangle A C G△ A C G is 2 7 \log _{2} 7log 2 7 . The requested area is
Area ( △ A B C ) = Area ( △ A C G ) − Area ( △ A B E ) − Area ( △ B C F ) − Area ( B E G F ) . \operatorname{Area}(\triangle A B C)=\operatorname{Area}(\triangle A C G)-\operatorname{Area}(\triangle A B E)-\operatorname{Area}(\triangle B C F)-\operatorname{Area}(B E G F) .
A r e a ( △ A B C ) = A r e a ( △ A C G ) − A r e a ( △ A B E ) − A r e a ( △ B C F ) − A r e a ( B E G F ) .
Note that
Area ( △ A B E ) = 1 2 2 3 ⋅ 1 = 2 3 , Area ( △ B C F ) = 1 2 ( 2 7 − 2 3 ) ⋅ 1 = 2 7 3 , and Area ( B E G F ) = ( 2 7 − 2 3 ) ⋅ 1 = 2 7 3 . \begin{aligned}
& \operatorname{Area}(\triangle A B E)=\frac{1}{2} \log _{2} 3 \cdot 1=\log _{2} \sqrt{3}, \\
& \operatorname{Area}(\triangle B C F)=\frac{1}{2}\left(\log _{2} 7-\log _{2} 3\right) \cdot 1=\log _{2} \sqrt{\frac{7}{3}}, \text { and } \\
& \operatorname{Area}(B E G F)=\left(\log _{2} 7-\log _{2} 3\right) \cdot 1=\log _{2} \frac{7}{3} .
\end{aligned}
A r e a ( △ A B E ) = 2 1 log 2 3 ⋅ 1 = log 2 3 , A r e a ( △ B C F ) = 2 1 ( log 2 7 − log 2 3 ) ⋅ 1 = log 2 3 7 , and A r e a ( B E G F ) = ( log 2 7 − log 2 3 ) ⋅ 1 = log 2 3 7 .
Therefore
Area ( △ A B C ) = 2 7 − 2 3 − 2 7 3 − 2 7 3 = 2 ( 7 3 ⋅ 7 3 ⋅ 7 3 ) = ( B ) 2 3 7 . \begin{aligned}
\text { Area }(\triangle A B C) & =\log _{2} 7-\log _{2} \sqrt{3}-\log _{2} \sqrt{\frac{7}{3}}-\log _{2} \frac{7}{3} \\
& =\log _{2}\left(\frac{7}{\sqrt{3} \cdot \sqrt{\frac{7}{3}} \cdot \frac{7}{3}}\right) \\
& =(\text{B})\boxed{\log _{2} \frac{3}{\sqrt{7}}} .
\end{aligned}
Area ( △ A B C ) = log 2 7 − log 2 3 − log 2 3 7 − log 2 3 7 = log 2 ⎝ ⎛ 3 ⋅ 3 7 ⋅ 3 7 7 ⎠ ⎞ = ( B ) log 2 7 3 .
OR \textbf{OR}
OR
The area of triangle △ A B C \triangle A B C△ A B C is given by
1 2 det [ 1 0 1 1 2 3 2 1 2 7 3 ] = 1 2 det [ 1 0 1 − 1 2 3 0 − 2 2 7 0 ] = 1 2 det [ − 1 2 3 − 2 2 7 ] = 1 2 ( − 2 7 + 2 9 ) = 2 3 7 \begin{aligned}
\frac{1}{2} \operatorname{det}\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & \log _{2} 3 & 2 \\
1 & \log _{2} 7 & 3
\end{array}\right] & =\frac{1}{2} \operatorname{det}\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & \log _{2} 3 & 0 \\
-2 & \log _{2} 7 & 0
\end{array}\right] \\
& =\frac{1}{2} \operatorname{det}\left[\begin{array}{cc}
-1 & \log _{2} 3 \\
-2 & \log _{2} 7
\end{array}\right] \\
& =\frac{1}{2}\left(-\log _{2} 7+\log _{2} 9\right) \\
& =\log _{2} \frac{3}{\sqrt{7}}
\end{aligned}
2 1 d e t ⎣ ⎢ ⎡ 1 1 1 0 log 2 3 log 2 7 1 2 3 ⎦ ⎥ ⎤ = 2 1 d e t ⎣ ⎢ ⎡ 1 − 1 − 2 0 log 2 3 log 2 7 1 0 0 ⎦ ⎥ ⎤ = 2 1 d e t [ − 1 − 2 log 2 3 log 2 7 ] = 2 1 ( − log 2 7 + log 2 9 ) = log 2 7 3
The cross product of two vectors in the x − y x-yx − y plane is a vector in the z zz direction whose magnitude is twice the area of the triangle determined by the two vectors. The area of the triangle with vertices A ( 0 , 1 , 0 ) , B ( 2 3 , 2 , 0 ) A(0,1,0), B\left(\log _{2} 3,2,0\right)A ( 0 , 1 , 0 ) , B ( log 2 3 , 2 , 0 ) , and C ( 2 7 , 3 , 0 ) C\left(\log _{2} 7,3,0\right)C ( log 2 7 , 3 , 0 ) is the z zz -component of
1 2 ( B − A ) × ( C − A ) = 1 2 ( 2 3 , 1 , 0 ) × ( 2 7 , 2 , 0 ) = 1 2 ( 1 ⋅ 0 − 0 ⋅ 2 , 2 7 ⋅ 0 − 2 3 ⋅ 0 , 2 3 ⋅ 2 − 1 ⋅ 2 7 ) = ( 0 , 0 , 2 3 − 2 7 ) = ( 0 , 0 , 2 3 7 ) . \begin{aligned}
\frac{1}{2}(B-A) & \times(C-A)=\frac{1}{2}\left(\log _{2} 3,1,0\right) \times\left(\log _{2} 7,2,0\right) \\
& =\frac{1}{2}\left(1 \cdot 0-0 \cdot 2, \log _{2} 7 \cdot 0-\log _{2} 3 \cdot 0, \log _{2} 3 \cdot 2-1 \cdot \log _{2} 7\right) \\
& =\left(0,0, \log _{2} 3-\log _{2} \sqrt{7}\right)=\left(0,0, \log _{2} \frac{3}{\sqrt{7}}\right) .
\end{aligned}
2 1 ( B − A ) × ( C − A ) = 2 1 ( log 2 3 , 1 , 0 ) × ( log 2 7 , 2 , 0 ) = 2 1 ( 1 ⋅ 0 − 0 ⋅ 2 , log 2 7 ⋅ 0 − log 2 3 ⋅ 0 , log 2 3 ⋅ 2 − 1 ⋅ log 2 7 ) = ( 0 , 0 , log 2 3 − log 2 7 ) = ( 0 , 0 , log 2 7 3 ) .
Thus the area of the triangle is ( B ) 2 3 7 (\text{B})\boxed{\log _{2} \frac{3}{\sqrt{7}}}( B ) log 2 7 3 .
OR \textbf{OR}
OR
Define the points H ( 0 , 2 ) , I ( 0 , 3 ) H(0,2), I(0,3)H ( 0 , 2 ) , I ( 0 , 3 ) , and J ( 2 3 , 3 ) J\left(\log _{2} 3,3\right)J ( log 2 3 , 3 ) .
Then H B C I H B C IH B C I is a trapezoid, which can be decomposed into right triangle △ C J B \triangle C J B△ C J B and rectangle HBJI. Because
2 3 > 2 7 = 1 2 2 7 , \log _{2} 3>\log _{2} \sqrt{7}=\frac{1}{2} \log _{2} 7,
log 2 3 > log 2 7 = 2 1 log 2 7 ,
point B BB is to the right of line A C A CA C . Therefore
Area ( △ A B C ) = Area ( △ A B H ) + Area ( H B C I ) − Area ( △ A C I ) = 1 2 2 3 + 1 2 ( 2 7 − 2 3 ) + 2 3 − 2 7 = 2 3 − 1 2 2 7 = ( B ) 2 3 7 . \begin{aligned}
\operatorname{Area}(\triangle A B C) & =\operatorname{Area}(\triangle A B H)+\operatorname{Area}(H B C I)-\operatorname{Area}(\triangle A C I) \\
& =\frac{1}{2} \log _{2} 3+\frac{1}{2}\left(\log _{2} 7-\log _{2} 3\right)+\log _{2} 3-\log _{2} 7 \\
& =\log _{2} 3-\frac{1}{2} \log _{2} 7 \\
& =(\text{B})\boxed{\log _{2} \frac{3}{\sqrt{7}}} .
\end{aligned}
A r e a ( △ A B C ) = A r e a ( △ A B H ) + A r e a ( H B C I ) − A r e a ( △ A C I ) = 2 1 log 2 3 + 2 1 ( log 2 7 − log 2 3 ) + log 2 3 − log 2 7 = log 2 3 − 2 1 log 2 7 = ( B ) log 2 7 3 .
The problems on this page are the property of the MAA's American Mathematics Competitions