Problem:
Find the number of ordered pairs of real numbers ( a , b ) (a, b)( a , b ) such that ( a + b i ) 2002 = (a+b i)^{2002}=( a + b i ) 2 0 0 2 = a − b i a-b ia − b i .
Answer Choices:
A. 1001 10011 0 0 1
B. 1002 10021 0 0 2
C. 2001 20012 0 0 1
D. 2002 20022 0 0 2
E. 2004 20042 0 0 4
Solution:
Let z = a + b i , z ˉ = a − b i z=a+b i, \bar{z}=a-b iz = a + b i , z ˉ = a − b i , and ∣ z ∣ = a 2 + b 2 |z|=\sqrt{a^{2}+b^{2}}∣ z ∣ = a 2 + b 2 ​ . The given relation becomes z 2002 = z ˉ z^{2002}=\bar{z}z 2 0 0 2 = z ˉ . Note that
∣ z ∣ 2002 = ∣ z 2002 ∣ = ∣ z ˉ ∣ = ∣ z ∣ |z|^{2002}=\left|z^{2002}\right|=|\bar{z}|=|z|
∣ z ∣ 2 0 0 2 = ∣ ∣ ∣ ​ z 2 0 0 2 ∣ ∣ ∣ ​ = ∣ z ˉ ∣ = ∣ z ∣
from which it follows that
∣ z ∣ ( ∣ z ∣ 2001 − 1 ) = 0 |z|\left(|z|^{2001}-1\right)=0
∣ z ∣ ( ∣ z ∣ 2 0 0 1 − 1 ) = 0
Hence ∣ z ∣ = 0 |z|=0∣ z ∣ = 0 , and ( a , b ) = ( 0 , 0 ) (a, b)=(0,0)( a , b ) = ( 0 , 0 ) , or ∣ z ∣ = 1 |z|=1∣ z ∣ = 1 . In the case ∣ z ∣ = 1 |z|=1∣ z ∣ = 1 , we have z 2002 = z ˉ z^{2002}=\bar{z}z 2 0 0 2 = z ˉ , which is equivalent to z 2003 = z ˉ ⋅ z = ∣ z ∣ 2 = 1 z^{2003}=\bar{z} \cdot z=|z|^{2}=1z 2 0 0 3 = z ˉ ⋅ z = ∣ z ∣ 2 = 1 . Since the equation z 2003 = 1 z^{2003}=1z 2 0 0 3 = 1 has 2003 distinct solutions, there are altogether 1 + 2003 = 2004 1+2003=\boxed{2004}1 + 2 0 0 3 = 2 0 0 4 ​ ordered pairs that meet the required conditions.
The problems on this page are the property of the MAA's American Mathematics Competitions