Problem:
Let S SS be the set of ordered triples ( x , y , z ) (x, y, z)( x , y , z ) of real numbers for which
10 ( x + y ) = z and 10 ( x 2 + y 2 ) = z + 1 \log _{10}(x+y)=z \quad \text { and } \quad \log _{10}\left(x^{2}+y^{2}\right)=z+1
log 1 0 ​ ( x + y ) = z and log 1 0 ​ ( x 2 + y 2 ) = z + 1
There are real numbers a aa and b bb such that for all ordered triples ( x , y , z ) (x, y, z)( x , y , z ) in S SS we have x 3 + y 3 = a â‹… 1 0 3 z + b â‹… 1 0 2 z x^{3}+y^{3}=a \cdot 10^{3 z}+b \cdot 10^{2 z}x 3 + y 3 = a â‹… 1 0 3 z + b â‹… 1 0 2 z . What is the value of a + b a+ba + b ?
Answer Choices:
A. 15 2 \dfrac{15}{2}2 1 5 ​
B. 29 2 \dfrac{29}{2}2 2 9 ​
C. 15 151 5
D. 39 2 \dfrac{39}{2}2 3 9 ​
E. 24 242 4
Solution:
From the given conditions it follows that
x + y = 1 0 z , x 2 + y 2 = 10 â‹… 1 0 z and 1 0 2 z = ( x + y ) 2 = x 2 + 2 x y + y 2 x+y=10^{z}, \quad x^{2}+y^{2}=10 \cdot 10^{z} \quad \text { and } \quad 10^{2 z}=(x+y)^{2}=x^{2}+2 x y+y^{2}
x + y = 1 0 z , x 2 + y 2 = 1 0 â‹… 1 0 z and 1 0 2 z = ( x + y ) 2 = x 2 + 2 x y + y 2
Thus
x y = 1 2 ( 1 0 2 z − 10 ⋅ 1 0 z ) x y=\dfrac{1}{2}\left(10^{2 z}-10 \cdot 10^{z}\right)
x y = 2 1 ​ ( 1 0 2 z − 1 0 ⋅ 1 0 z )
Also
( x + y ) 3 = 1 0 3 z and x 3 + y 3 = ( x + y ) 3 − 3 x y ( x + y ) (x+y)^{3}=10^{3 z} \quad \text { and } \quad x^{3}+y^{3}=(x+y)^{3}-3 x y(x+y)
( x + y ) 3 = 1 0 3 z and x 3 + y 3 = ( x + y ) 3 − 3 x y ( x + y )
which yields
x 3 + y 3 = 1 0 3 z − 3 2 ( 1 0 2 z − 10 ⋅ 1 0 z ) ( 1 0 z ) = 1 0 3 z − 3 2 ( 1 0 3 z − 10 ⋅ 1 0 2 z ) = − 1 2 1 0 3 z + 15 ⋅ 1 0 2 z \begin{aligned}
x^{3}+y^{3} =10^{3 z}-\dfrac{3}{2}\left(10^{2 z}-10 \cdot 10^{z}\right)\left(10^{z}\right) \\
=10^{3 z}-\dfrac{3}{2}\left(10^{3 z}-10 \cdot 10^{2 z}\right)=-\dfrac{1}{2} 10^{3 z}+15 \cdot 10^{2 z}
\end{aligned}
x 3 + y 3 = 1 0 3 z − 2 3 ​ ( 1 0 2 z − 1 0 ⋅ 1 0 z ) ( 1 0 z ) = 1 0 3 z − 2 3 ​ ( 1 0 3 z − 1 0 ⋅ 1 0 2 z ) = − 2 1 ​ 1 0 3 z + 1 5 ⋅ 1 0 2 z ​
and a + b = − 1 2 + 15 = 29 / 2 a+b=-\dfrac{1}{2}+15=29 / 2a + b = − 2 1 ​ + 1 5 = 2 9 / 2 .
No other value of a + b a+ba + b is possible for all members of S SS , because the triple ( 1 2 ( 1 + 19 ) , 1 2 ( 1 − 19 ) , 0 ) \left(\dfrac{1}{2}(1+\sqrt{19}), \dfrac{1}{2}(1-\sqrt{19}), 0\right)( 2 1 ​ ( 1 + 1 9 ​ ) , 2 1 ​ ( 1 − 1 9 ​ ) , 0 ) is in S SS , and for this ordered triple, the equation x 3 + y 3 = a ⋅ 1 0 3 z + b ⋅ 1 0 2 z x^{3}+y^{3}=a \cdot 10^{3 z}+b \cdot 10^{2 z}x 3 + y 3 = a ⋅ 1 0 3 z + b ⋅ 1 0 2 z reduces to a + b = 29 / 2 a+b= \boxed{29 / 2}a + b = 2 9 / 2 ​ .
The problems on this page are the property of the MAA's American Mathematics Competitions