Problem:
A bee starts flying from point P 0 P_{0}P 0 . She flies 1 inch due east to point P 1 P_{1}P 1 . For j ≥ 1 j \geq 1j ≥ 1 , once the bee reaches point P j P_{j}P j , she turns 3 0 ∘ 30^{\circ}3 0 ∘ counterclockwise and then flies j + 1 j+1j + 1 inches straight to point P j + 1 P_{j+1}P j + 1 . When the bee reaches P 2015 P_{2015}P 2 0 1 5 she is exactly a b + c d a \sqrt{b}+c \sqrt{d}a b + c d inches away from P 0 P_{0}P 0 , where a , b , c a, b, ca , b , c , and d dd are positive integers and b bb and d dd are not divisible by the square of any prime. What is a + b + c + d a+b+c+da + b + c + d ?
Answer Choices:
A. 2016 20162 0 1 6
B. 2024 20242 0 2 4
C. 2032 20322 0 3 2
D. 2040 20402 0 4 0
E. 2048 20482 0 4 8
Solution:
Modeling the bee's path with complex numbers, set P 0 = 0 P_{0}=0P 0 = 0 and z = e π i / 6 z=e^{\pi i / 6}z = e π i / 6 . It follows that for j ≥ 1 j \geq 1j ≥ 1 ,
P j = ∑ k = 1 j k z k − 1 P_{j}=\sum_{k=1}^{j} k z^{k-1}
P j = k = 1 ∑ j k z k − 1
Thus
P 2015 = ∑ k = 0 2015 k z k − 1 = ∑ k = 0 2014 ( k + 1 ) z k = ∑ k = 0 2014 ∑ j = 0 k z k P_{2015}=\sum_{k=0}^{2015} k z^{k-1}=\sum_{k=0}^{2014}(k+1) z^{k}=\sum_{k=0}^{2014} \sum_{j=0}^{k} z^{k}
P 2 0 1 5 = k = 0 ∑ 2 0 1 5 k z k − 1 = k = 0 ∑ 2 0 1 4 ( k + 1 ) z k = k = 0 ∑ 2 0 1 4 j = 0 ∑ k z k
Interchanging the order of summation and summing the geometric series gives
P 2015 = ∑ j = 0 2014 ∑ k = j 2014 z k = ∑ j = 0 2014 z j ∑ k = 0 2014 − j z k = ∑ j = 0 2014 z j ( z 2015 − j − 1 ) z − 1 = ∑ j = 0 2014 z 2015 − z j z − 1 = 1 z − 1 ∑ j = 0 2014 ( z 2015 − z j ) = 1 z − 1 ( 2015 z 2015 − ∑ j = 0 2014 z j ) = 1 z − 1 ( 2015 z 2015 − z 2015 − 1 z − 1 ) = 1 ( z − 1 ) 2 ( 2015 z 2015 ( z − 1 ) − z 2015 + 1 ) = 1 ( z − 1 ) 2 ( 2015 z 2016 − 2016 z 2015 + 1 ) \begin{aligned}
P_{2015} =\sum_{j=0}^{2014} \sum_{k=j}^{2014} z^{k}=\sum_{j=0}^{2014} z^{j} \sum_{k=0}^{2014-j} z^{k} \\
=\sum_{j=0}^{2014} \dfrac{z^{j}\left(z^{2015-j}-1\right)}{z-1}=\sum_{j=0}^{2014} \dfrac{z^{2015}-z^{j}}{z-1}=\dfrac{1}{z-1} \sum_{j=0}^{2014}\left(z^{2015}-z^{j}\right) \\
=\dfrac{1}{z-1}\left(2015 z^{2015}-\sum_{j=0}^{2014} z^{j}\right)=\dfrac{1}{z-1}\left(2015 z^{2015}-\dfrac{z^{2015}-1}{z-1}\right) \\
=\dfrac{1}{(z-1)^{2}}\left(2015 z^{2015}(z-1)-z^{2015}+1\right) \\
=\dfrac{1}{(z-1)^{2}}\left(2015 z^{2016}-2016 z^{2015}+1\right)
\end{aligned}
P 2 0 1 5 = j = 0 ∑ 2 0 1 4 k = j ∑ 2 0 1 4 z k = j = 0 ∑ 2 0 1 4 z j k = 0 ∑ 2 0 1 4 − j z k = j = 0 ∑ 2 0 1 4 z − 1 z j ( z 2 0 1 5 − j − 1 ) = j = 0 ∑ 2 0 1 4 z − 1 z 2 0 1 5 − z j = z − 1 1 j = 0 ∑ 2 0 1 4 ( z 2 0 1 5 − z j ) = z − 1 1 ( 2 0 1 5 z 2 0 1 5 − j = 0 ∑ 2 0 1 4 z j ) = z − 1 1 ( 2 0 1 5 z 2 0 1 5 − z − 1 z 2 0 1 5 − 1 ) = ( z − 1 ) 2 1 ( 2 0 1 5 z 2 0 1 5 ( z − 1 ) − z 2 0 1 5 + 1 ) = ( z − 1 ) 2 1 ( 2 0 1 5 z 2 0 1 6 − 2 0 1 6 z 2 0 1 5 + 1 )
Note that z 12 = 1 z^{12}=1z 1 2 = 1 and thus z 2016 = ( z 12 ) 168 = 1 z^{2016}=\left(z^{12}\right)^{168}=1z 2 0 1 6 = ( z 1 2 ) 1 6 8 = 1 and z 2015 = 1 z z^{2015}=\dfrac{1}{z}z 2 0 1 5 = z 1 . It follows that
P 2015 = 2016 ( z − 1 ) 2 ( 1 − 1 z ) = 2016 z ( z − 1 ) P_{2015}=\dfrac{2016}{(z-1)^{2}}\left(1-\dfrac{1}{z}\right)=\dfrac{2016}{z(z-1)}
P 2 0 1 5 = ( z − 1 ) 2 2 0 1 6 ( 1 − z 1 ) = z ( z − 1 ) 2 0 1 6
Finally,
∣ z − 1 ∣ 2 = ∣ cos ( π 6 ) − 1 + i sin ( π 6 ) ∣ 2 = ∣ 3 2 − 1 + i 2 ∣ 2 = 2 − 3 = ( 3 − 1 ) 2 2 |z-1|^{2}=\left|\cos \left(\dfrac{\pi}{6}\right)-1+i \sin \left(\dfrac{\pi}{6}\right)\right|^{2}=\left|\dfrac{\sqrt{3}}{2}-1+\dfrac{i}{2}\right|^{2}=2-\sqrt{3}=\dfrac{(\sqrt{3}-1)^{2}}{2}
∣ z − 1 ∣ 2 = ∣ ∣ ∣ ∣ cos ( 6 π ) − 1 + i sin ( 6 π ) ∣ ∣ ∣ ∣ 2 = ∣ ∣ ∣ ∣ ∣ ∣ 2 3 − 1 + 2 i ∣ ∣ ∣ ∣ ∣ ∣ 2 = 2 − 3 = 2 ( 3 − 1 ) 2
and thus
∣ P 2015 ∣ = ∣ 2016 z ( z − 1 ) ∣ = 2016 ∣ z − 1 ∣ = 2016 2 3 − 1 = 1008 2 ( 3 + 1 ) = 1008 6 + 1008 2 \begin{aligned}
\left|P_{2015}\right| =\left|\dfrac{2016}{z(z-1)}\right|=\dfrac{2016}{|z-1|}=\dfrac{2016 \sqrt{2}}{\sqrt{3}-1}=1008 \sqrt{2}(\sqrt{3}+1) \\
=1008 \sqrt{6}+1008 \sqrt{2}
\end{aligned}
∣ P 2 0 1 5 ∣ = ∣ ∣ ∣ ∣ ∣ z ( z − 1 ) 2 0 1 6 ∣ ∣ ∣ ∣ ∣ = ∣ z − 1 ∣ 2 0 1 6 = 3 − 1 2 0 1 6 2 = 1 0 0 8 2 ( 3 + 1 ) = 1 0 0 8 6 + 1 0 0 8 2
The requested sum is 1008 + 6 + 1008 + 2 = 2024 1008+6+1008+2= \boxed{2024}1 0 0 8 + 6 + 1 0 0 8 + 2 = 2 0 2 4 .
The problems on this page are the property of the MAA's American Mathematics Competitions