Problem:
Let { a k } k = 1 2011 \left\{a_{k}\right\}_{k=1}^{2011}{ a k } k = 1 2 0 1 1 be the sequence of real numbers defined by
a 1 = 0.201 , a 2 = ( 0.2011 ) a 1 , a 3 = ( 0.20101 ) a 2 , a 4 = ( 0.201011 ) a 3 a_{1}=0.201, \quad a_{2}=(0.2011)^{a_{1}}, \quad a_{3}=(0.20101)^{a_{2}}, \quad a_{4}=(0.201011)^{a_{3}}
a 1 = 0 . 2 0 1 , a 2 = ( 0 . 2 0 1 1 ) a 1 , a 3 = ( 0 . 2 0 1 0 1 ) a 2 , a 4 = ( 0 . 2 0 1 0 1 1 ) a 3
and more generally
a k = { ( 0. 20101 … 0101 ⏟ k + 2 digits ) a k − 1 , if k is odd, ( 0. 20101 … 01011 ⏟ k + 2 digits ) a k − 1 , if k is even. a_{k}= \begin{cases}(0 . \underbrace{20101 \ldots 0101}_{k+2 \text { digits }})^{a_{k-1}}, \text { if } k \text { is odd, } \\ (0 . \underbrace{20101 \ldots 01011}_{k+2 \text { digits }})^{a_{k-1}}, \text { if } k \text { is even. }\end{cases}
a k = ⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ ( 0 . k + 2 digits 2 0 1 0 1 … 0 1 0 1 ) a k − 1 , if k is odd, ( 0 . k + 2 digits 2 0 1 0 1 … 0 1 0 1 1 ) a k − 1 , if k is even.
Rearranging the numbers in the sequence { a k } k = 1 2011 \left\{a_{k}\right\}_{k=1}^{2011}{ a k } k = 1 2 0 1 1 in decreasing order produces a new sequence { b k } k = 1 2011 \left\{b_{k}\right\}_{k=1}^{2011}{ b k } k = 1 2 0 1 1 . What is the sum of all the integers k , 1 ≤ k ≤ 2011 k, 1 \leq k \leq 2011k , 1 ≤ k ≤ 2 0 1 1 , such that a k = b k a_{k}=b_{k}a k = b k ?
Answer Choices:
A. 671 6716 7 1
B. 1006 10061 0 0 6
C. 1341 13411 3 4 1
D. 2011 20112 0 1 1
E. 2012 20122 0 1 2
Solution:
Because y = a x y=a^{x}y = a x is decreasing for 0 < a < 1 0<a<10 < a < 1 and y = x b y=x^{b}y = x b is increasing on the interval [ 0 , ∞ ) [0, \infty)[ 0 , ∞ ) for b > 0 b>0b > 0 , it follows that
1 > a 2 = ( 0.2011 ) a 1 > ( 0.201 ) a 1 > ( 0.201 ) 1 = a 1 , a 3 = ( 0.20101 ) a 2 < ( 0.2011 ) a 2 < ( 0.2011 ) a 1 = a 2 , \begin{aligned}
1>a_{2} =(0.2011)^{a_{1}}>(0.201)^{a_{1}}>(0.201)^{1}=a_{1}, \\
a_{3} =(0.20101)^{a_{2}}<(0.2011)^{a_{2}}<(0.2011)^{a_{1}}=a_{2},
\end{aligned}
1 > a 2 = ( 0 . 2 0 1 1 ) a 1 > ( 0 . 2 0 1 ) a 1 > ( 0 . 2 0 1 ) 1 = a 1 , a 3 = ( 0 . 2 0 1 0 1 ) a 2 < ( 0 . 2 0 1 1 ) a 2 < ( 0 . 2 0 1 1 ) a 1 = a 2 ,
and
a 3 = ( 0.20101 ) a 2 > ( 0.201 ) a 2 > ( 0.201 ) 1 = a 1 . a_{3}=(0.20101)^{a_{2}}>(0.201)^{a_{2}}>(0.201)^{1}=a_{1} .
a 3 = ( 0 . 2 0 1 0 1 ) a 2 > ( 0 . 2 0 1 ) a 2 > ( 0 . 2 0 1 ) 1 = a 1 .
Therefore 1 > a 2 > a 3 > a 1 > 0 1>a_{2}>a_{3}>a_{1}>01 > a 2 > a 3 > a 1 > 0 . More generally, it can be shown by induction that
1 > b 1 = a 2 > b 2 = a 4 > ⋯ > b 1005 = a 2010 1>b_{1}=a_{2}>b_{2}=a_{4}>\cdots>b_{1005}=a_{2010}
1 > b 1 = a 2 > b 2 = a 4 > ⋯ > b 1 0 0 5 = a 2 0 1 0
> b 1006 = a 2011 > b 1007 = a 2009 > ⋯ > b 2011 = a 1 > 0 >b_{1006}=a_{2011}>b_{1007}=a_{2009}>\cdots>b_{2011}=a_{1}>0
> b 1 0 0 6 = a 2 0 1 1 > b 1 0 0 7 = a 2 0 0 9 > ⋯ > b 2 0 1 1 = a 1 > 0
Hence a k = b k a_{k}=b_{k}a k = b k if and only if 2 ( k − 1006 ) = 2011 − k 2(k-1006)=2011-k2 ( k − 1 0 0 6 ) = 2 0 1 1 − k , so k = 1341 k= \boxed{1341}k = 1 3 4 1 .
The problems on this page are the property of the MAA's American Mathematics Competitions