Problem:
The tower function of twos is defined recursively as follows: T ( 1 ) = 2 T(1)=2T ( 1 ) = 2 and T ( n + 1 ) = 2 T ( n ) T(n+1)=2^{T(n)}T ( n + 1 ) = 2 T ( n ) for n ≥ 1 n \geq 1n ≥ 1 . Let A = ( T ( 2009 ) ) T ( 2009 ) A=(T(2009))^{T(2009)}A = ( T ( 2 0 0 9 ) ) T ( 2 0 0 9 ) and B = ( T ( 2009 ) ) A B=(T(2009))^{A}B = ( T ( 2 0 0 9 ) ) A . What is the largest integer k kk such that
2 2 2 … 2 ⏟ k times B \underbrace{\log _{2} \log _{2} \log _{2} \ldots \log _{2}}_{k \text { times }} B
k times log 2 log 2 log 2 … log 2 B
is defined?
Answer Choices:
A. 2009 20092 0 0 9
B. 2010 20102 0 1 0
C. 2011 20112 0 1 1
D. 2012 20122 0 1 2
E. 2013 20132 0 1 3
Solution:
Define the k kk -iterated logarithm as follows: 2 1 x = 2 x \log _{2}^{1} x=\log _{2} xlog 2 1 x = log 2 x and 2 k + 1 x = 2 ( 2 k x ) \log _{2}^{k+1} x=\log _{2}\left(\log _{2}^{k} x\right)log 2 k + 1 x = log 2 ( log 2 k x ) for k ≥ 1 k \geq 1k ≥ 1 . Because 2 T ( n + 1 ) = T ( n ) \log _{2} T(n+1)=T(n)log 2 T ( n + 1 ) = T ( n ) for n ≥ 1 n \geq 1n ≥ 1 , it follows that 2 A = T ( 2009 ) 2 T ( 2009 ) = T ( 2009 ) T ( 2008 ) \log _{2} A=T(2009) \log _{2} T(2009)=T(2009) T(2008)log 2 A = T ( 2 0 0 9 ) log 2 T ( 2 0 0 9 ) = T ( 2 0 0 9 ) T ( 2 0 0 8 ) and 2 B = A 2 T ( 2009 ) = A ⋅ T ( 2008 ) \log _{2} B=A \log _{2} T(2009)=A \cdot T(2008)log 2 B = A log 2 T ( 2 0 0 9 ) = A ⋅ T ( 2 0 0 8 ) . Then 2 2 B = 2 A + 2 T ( 2008 ) = \log _{2}^{2} B=\log _{2} A+\log _{2} T(2008)=log 2 2 B = log 2 A + log 2 T ( 2 0 0 8 ) = T ( 2009 ) T ( 2008 ) + T ( 2007 ) T(2009) T(2008)+T(2007)T ( 2 0 0 9 ) T ( 2 0 0 8 ) + T ( 2 0 0 7 ) . Now,
2 3 B > 2 ( T ( 2009 ) T ( 2008 ) ) > 2 T ( 2009 ) = T ( 2008 ) \log _{2}^{3} B>\log _{2}(T(2009) T(2008))>\log _{2} T(2009)=T(2008)
log 2 3 B > log 2 ( T ( 2 0 0 9 ) T ( 2 0 0 8 ) ) > log 2 T ( 2 0 0 9 ) = T ( 2 0 0 8 )
and recursively for k ≥ 1 k \geq 1k ≥ 1 ,
2 k + 3 B > T ( 2008 − k ) \log _{2}^{k+3} B>T(2008-k)
log 2 k + 3 B > T ( 2 0 0 8 − k )
In particular 2 2010 B > T ( 1 ) = 2 \log _{2}^{2010} B>T(1)=2log 2 2 0 1 0 B > T ( 1 ) = 2 , and then 2 2012 B > 0 \log _{2}^{2012} B>0log 2 2 0 1 2 B > 0 . Thus 2 2013 B \log _{2}^{2013} Blog 2 2 0 1 3 B is defined.
On the other hand, because T ( 2007 ) < T ( 2008 ) T ( 2009 ) T(2007)<T(2008) T(2009)T ( 2 0 0 7 ) < T ( 2 0 0 8 ) T ( 2 0 0 9 ) and 1 + T ( 2007 ) < 1+T(2007)<1 + T ( 2 0 0 7 ) < T ( 2008 ) T(2008)T ( 2 0 0 8 ) , it follows that
2 3 B < 2 ( 2 T ( 2008 ) T ( 2009 ) ) = 1 + T ( 2007 ) + T ( 2008 ) < 2 T ( 2008 ) and 2 4 B < 2 ( 2 T ( 2008 ) ) = 1 + T ( 2007 ) < T ( 2008 ) \begin{aligned}
\log _{2}^{3} B<\log _{2}(2 T(2008) T(2009))=1+T(2007)+T(2008)<2 T(2008) \text { and } \\
\log _{2}^{4} B<\log _{2}(2 T(2008))=1+T(2007)<T(2008)
\end{aligned}
log 2 3 B < log 2 ( 2 T ( 2 0 0 8 ) T ( 2 0 0 9 ) ) = 1 + T ( 2 0 0 7 ) + T ( 2 0 0 8 ) < 2 T ( 2 0 0 8 ) and log 2 4 B < log 2 ( 2 T ( 2 0 0 8 ) ) = 1 + T ( 2 0 0 7 ) < T ( 2 0 0 8 )
Applying 2 \log _{2}log 2 recursively for k ≥ 1 k \geq 1k ≥ 1 we get
2 4 + k B < T ( 2008 − k ) \log _{2}^{4+k} B<T(2008-k)
log 2 4 + k B < T ( 2 0 0 8 − k )
In particular 2 2011 B < T ( 1 ) = 2 \log _{2}^{2011} B<T(1)=2log 2 2 0 1 1 B < T ( 1 ) = 2 , and then 2 2013 B < 0 \log _{2}^{2013} B<0log 2 2 0 1 3 B < 0 . Thus 2 2014 B \log _{2}^{2014} Blog 2 2 0 1 4 B is undefined.
The problems on this page are the property of the MAA's American Mathematics Competitions