Problem:
The sequence
12 162 , 12 x , 12 y , 12 z , 12 1250 \log _{12} 162, \log _{12} x, \log _{12} y, \log _{12} z, \log _{12} 1250
log 1 2 ​ 1 6 2 , log 1 2 ​ x , log 1 2 ​ y , log 1 2 ​ z , log 1 2 ​ 1 2 5 0
is an arithmetic progression. What is x xx ?
Answer Choices:
A. 125 3 125 \sqrt{3}1 2 5 3 ​
B. 270 2702 7 0
C. 162 5 162 \sqrt{5}1 6 2 5 ​
D. 434 4344 3 4
E. 225 6 225 \sqrt{6}2 2 5 6 ​
Solution:
Because the terms form an arithmetic sequence,
12 y = 1 2 ( 12 162 + 12 1250 ) = 1 2 12 ( 162 â‹… 1250 ) = 1 2 12 ( 2 2 3 4 5 4 ) = 12 ( 2 â‹… 3 2 5 2 ) \begin{aligned}
\log _{12} y =\dfrac{1}{2}\left(\log _{12} 162+\log _{12} 1250\right)=\dfrac{1}{2} \log _{12}(162 \cdot 1250) \\
=\dfrac{1}{2} \log _{12}\left(2^{2} 3^{4} 5^{4}\right)=\log _{12}\left(2 \cdot 3^{2} 5^{2}\right)
\end{aligned}
log 1 2 ​ y = 2 1 ​ ( log 1 2 ​ 1 6 2 + log 1 2 ​ 1 2 5 0 ) = 2 1 ​ log 1 2 ​ ( 1 6 2 ⋅ 1 2 5 0 ) = 2 1 ​ log 1 2 ​ ( 2 2 3 4 5 4 ) = log 1 2 ​ ( 2 ⋅ 3 2 5 2 ) ​
Then
12 x = 1 2 ( 12 162 + 12 y ) = 1 2 ( 12 ( 2 â‹… 3 4 ) + 12 ( 2 â‹… 3 2 5 2 ) ) = 1 2 12 ( 2 2 3 6 5 2 ) = 12 ( 2 â‹… 3 3 5 ) = 12 270. \begin{aligned}
\log _{12} x =\dfrac{1}{2}\left(\log _{12} 162+\log _{12} y\right)=\dfrac{1}{2}\left(\log _{12}\left(2 \cdot 3^{4}\right)+\log _{12}\left(2 \cdot 3^{2} 5^{2}\right)\right) \\
=\dfrac{1}{2} \log _{12}\left(2^{2} 3^{6} 5^{2}\right)=\log _{12}\left(2 \cdot 3^{3} 5\right)=\log _{12} 270 .
\end{aligned}
log 1 2 ​ x = 2 1 ​ ( log 1 2 ​ 1 6 2 + log 1 2 ​ y ) = 2 1 ​ ( log 1 2 ​ ( 2 ⋅ 3 4 ) + log 1 2 ​ ( 2 ⋅ 3 2 5 2 ) ) = 2 1 ​ log 1 2 ​ ( 2 2 3 6 5 2 ) = log 1 2 ​ ( 2 ⋅ 3 3 5 ) = log 1 2 ​ 2 7 0 . ​
Therefore x = 270 x=\boxed{270}x = 2 7 0 ​ .
OR
If ( B k ) = ( 12 A k ) \left(B_{k}\right)=\left(\log _{12} A_{k}\right)( B k ​ ) = ( log 1 2 ​ A k ​ ) is an arithmetic sequence with common difference d dd , then ( A k ) \left(A_{k}\right)( A k ​ ) is a geometric sequence with common ratio r = 1 2 d r=12^{d}r = 1 2 d . Therefore 162 , x , y , z , 1251 162, x, y, z, 12511 6 2 , x , y , z , 1 2 5 1 is a geometric sequence. Let r rr be their common ratio. Then 1250 = 162 r 4 1250=162 r^{4}1 2 5 0 = 1 6 2 r 4 and r = 5 3 r=\dfrac{5}{3}r = 3 5 ​ . Thus x = 162 r = 162 ⋅ 5 3 = 270 x=162 r=162 \cdot \dfrac{5}{3}= \boxed{270}x = 1 6 2 r = 1 6 2 ⋅ 3 5 ​ = 2 7 0 ​ .
The problems on this page are the property of the MAA's American Mathematics Competitions