Problem:
The graph of y = x 2 + 2 x − 15 y=x^{2}+2 x-15y = x 2 + 2 x − 1 5 intersects the x xx -axis at points A AA and C CC and the y yy -axis at point B BB . What is tan ( ∠ A B C ) \tan (\angle A B C)tan ( ∠ A B C ) ?
Answer Choices:
A. 1 7 \dfrac{1}{7}7 1
B. 1 4 \dfrac{1}{4}4 1
C. 3 7 \dfrac{3}{7}7 3
D. 1 2 \dfrac{1}{2}2 1
E. 4 7 \dfrac{4}{7}7 4
Solution:
Let O OO be the origin of the coordinate plane. Because the equation of the parabola can be written as y = ( x + 5 ) ( x − 3 ) y=(x+5)(x-3)y = ( x + 5 ) ( x − 3 ) , assume without loss of generality that A = ( − 5 , 0 ) A=(-5,0)A = ( − 5 , 0 ) and C = ( 3 , 0 ) C=(3,0)C = ( 3 , 0 ) . Point B BB is the y yy -intercept of the parabola, which is ( 0 , − 15 ) (0,-15)( 0 , − 1 5 ) . The altitude B O ‾ \overline{B O}B O splits △ A B C \triangle A B C△ A B C into two right triangles, one with legs 5 and 15 and one with legs 3 and 15 . Therefore
tan ( ∠ A B C ) = tan ( ∠ A B O + ∠ O B C ) = tan ( ∠ A B O ) + tan ( ∠ O B C ) 1 − tan ( ∠ A B O ) ⋅ tan ( ∠ O B C ) = 5 15 + 3 15 1 − 5 15 ⋅ 3 15 = 8 15 − 1 = ( E ) 4 7 . \begin{aligned}
\tan (\angle A B C) & =\tan (\angle A B O+\angle O B C) \\
& =\frac{\tan (\angle A B O)+\tan (\angle O B C)}{1-\tan (\angle A B O) \cdot \tan (\angle O B C)} \\
& =\frac{\frac{5}{15}+\frac{3}{15}}{1-\frac{5}{15} \cdot \frac{3}{15}}=\frac{8}{15-1}=(\text{E})\boxed{\frac{4}{7}} .
\end{aligned}
tan ( ∠ A B C ) = tan ( ∠ A B O + ∠ O B C ) = 1 − tan ( ∠ A B O ) ⋅ tan ( ∠ O B C ) tan ( ∠ A B O ) + tan ( ∠ O B C ) = 1 − 1 5 5 ⋅ 1 5 3 1 5 5 + 1 5 3 = 1 5 − 1 8 = ( E ) 7 4 .
OR \textbf{OR}
OR
With the notation as above,
A B = ( − 5 − 0 ) 2 + ( 0 − ( − 15 ) 2 = 250 , B C = ( 0 − 3 ) 2 + ( − 15 − 0 ) 2 = 234 , \begin{gathered}
A B=\sqrt{(-5-0)^{2}+\left(0-(-15)^{2}\right.}=\sqrt{250}, \\
B C=\sqrt{(0-3)^{2}+(-15-0)^{2}}=\sqrt{234},
\end{gathered}
A B = ( − 5 − 0 ) 2 + ( 0 − ( − 1 5 ) 2 = 2 5 0 , B C = ( 0 − 3 ) 2 + ( − 1 5 − 0 ) 2 = 2 3 4 ,
and A C = ∣ − 5 − 3 ∣ = 8 A C=|-5-3|=8A C = ∣ − 5 − 3 ∣ = 8 . By the Law of Cosines in △ A B C \triangle A B C△ A B C ,
cos ( ∠ A B C ) = 250 + 234 − 64 2 ⋅ 250 ⋅ 234 = 7 65 . \cos (\angle A B C)=\frac{250+234-64}{2 \cdot \sqrt{250} \cdot \sqrt{234}}=\frac{7}{\sqrt{65}} .
cos ( ∠ A B C ) = 2 ⋅ 2 5 0 ⋅ 2 3 4 2 5 0 + 2 3 4 − 6 4 = 6 5 7 .
Therefore 2 ( ∠ A B C ) = 49 65 \cos ^{2}(\angle A B C)=\frac{49}{65}cos 2 ( ∠ A B C ) = 6 5 4 9 and
2 ( ∠ A B C ) = 1 − 2 ( ∠ A B C ) = 16 65 \sin ^{2}(\angle A B C)=1-\cos ^{2}(\angle A B C)=\frac{16}{65}
sin 2 ( ∠ A B C ) = 1 − cos 2 ( ∠ A B C ) = 6 5 1 6
so 2 ( ∠ A B C ) = 16 49 \tan ^{2}(\angle A B C)=\frac{16}{49}tan 2 ( ∠ A B C ) = 4 9 1 6 . Because ∠ A B C \angle A B C∠ A B C is acute, its tangent is 16 49 = ( E ) 4 7 \sqrt{\frac{16}{49}}=(\text{E})\boxed{\frac{4}{7}}4 9 1 6 = ( E ) 7 4 .
The problems on this page are the property of the MAA's American Mathematics Competitions