Problem:
In unit square A B C D A B C DA B C D , the inscribed circle ω \omegaω intersects C D ‾ \overline{C D}C D at M MM , and A M ‾ \overline{A M}A M intersects ω \omegaω at a point P PP different from M MM . What is A P A PA P ?
Answer Choices:
A. 5 12 \dfrac{\sqrt{5}}{12}1 2 5 ​ ​
B. 5 10 \dfrac{\sqrt{5}}{10}1 0 5 ​ ​
C. 5 9 \dfrac{\sqrt{5}}{9}9 5 ​ ​
D. 5 8 \dfrac{\sqrt{5}}{8}8 5 ​ ​
E. 2 5 15 \dfrac{2 \sqrt{5}}{15}1 5 2 5 ​ ​
Solution:
Call the midpoint of A B ‾ \overline{A B}A B point N NN . Draw in N M ‾ \overline{N M}N M and N P ‾ \overline{N P}N P . Note that ∠N P M = 9 0 ∘ \angle N P M=90^{\circ}∠N P M = 9 0 ∘ due to Thales's Theorem.
Using the Pythagorean theorem, A M = 5 2 A M=\dfrac{\sqrt{5}}{2}A M = 2 5 ​ ​ . Now we just need to find A P A PA P using similar triangles △ A P N ∼ \triangle A P N \sim△ A P N ∼ △ A N M \triangle A N M△ A N M :
A P A N = A N A M \dfrac{A P}{A N} =\dfrac{A N}{A M}A N A P ​ = A M A N ​
A P 1 / 2 = 1 / 2 5 / 2 \dfrac{A P}{1 / 2} =\dfrac{1 / 2}{\sqrt{5} / 2}1 / 2 A P ​ = 5 ​ / 2 1 / 2 ​
A P = ( B ) 5 10 A P = \boxed{(B) \dfrac{\sqrt{5}}{10}}A P = ( B ) 1 0 5 ​ ​ ​
OR
Let N NN be the midpoint of A B ‾ \overline{A B}A B , from which ∠A N M = 9 0 ∘ \angle A N M=90^{\circ}∠A N M = 9 0 ∘ . Note that ∠N P M = 9 0 ∘ \angle N P M=90^{\circ}∠N P M = 9 0 ∘ by the Inscribed Angle Theorem.
We have the following diagram:
Since A N = 1 2 A N=\dfrac{1}{2}A N = 2 1 ​ and N M = 1 N M=1N M = 1 , we get A M = 5 2 A M=\dfrac{\sqrt{5}}{2}A M = 2 5 ​ ​ by the Pythagorean Theorem.
Let A P = x A P=xA P = x . It follows that P M = 5 2 − x P M=\dfrac{\sqrt{5}}{2}-xP M = 2 5 ​ ​ − x . Applying the Pythagorean Theorem to right △ A N P \triangle A N P△ A N P gives N P 2 = ( 1 2 ) 2 − x 2 N P^{2}=\left(\dfrac{1}{2}\right)^{2}-x^{2}N P 2 = ( 2 1 ​ ) 2 − x 2 , and applying the Pythagorean Theorem to right △ M N P \triangle M N P△ M N P gives N P 2 = 1 2 − ( 5 2 − x ) 2 N P^{2}=1^{2}-\left(\dfrac{\sqrt{5}}{2}-x\right)^{2}N P 2 = 1 2 − ( 2 5 ​ ​ − x ) 2 . Equating the expressions for N P 2 N P^{2}N P 2 produces
( 1 2 ) 2 − x 2 = 1 2 − ( 5 2 − x ) 2 \left(\dfrac{1}{2}\right)^{2}-x^{2} =1^{2}-\left(\dfrac{\sqrt{5}}{2}-x\right)^{2}( 2 1 ​ ) 2 − x 2 = 1 2 − ( 2 5 ​ ​ − x ) 2
1 4 − x 2 = 1 − 5 4 + 5 x − x 2 \dfrac{1}{4}-x^{2} =1-\dfrac{5}{4}+\sqrt{5} x-x^{2}4 1 ​ − x 2 = 1 − 4 5 ​ + 5 ​ x − x 2
1 2 = 5 x \dfrac{1}{2} =\sqrt{5} x2 1 ​ = 5 ​ x .
Finally, dividing both sides by 5 \sqrt{5}5 ​ and then rationalizing the denominator, we obtain x = 1 2 5 = x=\dfrac{1}{2 \sqrt{5}}=x = 2 5 ​ 1 ​ = ( B ) 5 10 \boxed{(B) \dfrac{\sqrt{5}}{10}}( B ) 1 0 5 ​ ​ ​ .
The problems on this page are the property of the MAA's American Mathematics Competitions