ΒΆ 1974 AHSME Problems and Solutions
Individual Problems and Solutions
For problems and detailed solutions to each of the 1974 AHSME problems, please refer below:
Problem 1: If x β 0 x \neq 0x ξ = 0 or 4 and y β 0 y \neq 0y ξ = 0 or 6 , then 2 x + 3 y = 1 2 \dfrac{2}{x}+\dfrac{3}{y}=\dfrac{1}{2}x 2 β + y 3 β = 2 1 β is equivalent to
Answer Choices:
A. 4 x + 3 y = x y 4x+3y=xy4 x + 3 y = x y
B. y = 4 x 6 β y y=\dfrac{4x}{6-y}y = 6 β y 4 x β
C. x 2 + y 3 = 2 \dfrac{x}{2}+\dfrac{y}{3}=22 x β + 3 y β = 2
D. 4 y y β 6 = x \dfrac{4y}{y-6}=xy β 6 4 y β = x
E. none of these
Solution:
View Solution
Problem 2: Let x 1 x_{1}x 1 β and x 2 x_{2}x 2 β be such that x 1 β x 2 x_{1} \neq x_{2}x 1 β ξ = x 2 β and 3 x i 2 β h x i = b , i = 1 , 2 3x_{i}^{2}-hx_{i}=b, i=1,23 x i 2 β β h x i β = b , i = 1 , 2 . Then x 1 + x 2 x_{1}+x_{2}x 1 β + x 2 β equals
Answer Choices:
A. β h 3 -\dfrac{h}{3}β 3 h β
B. h 3 \dfrac{h}{3}3 h β
C. b 3 \dfrac{b}{3}3 b β
D. 2 b 2b2 b
E. β b 3 -\dfrac{b}{3}β 3 b β
Solution:
View Solution
Problem 3: The coefficient of x 7 x^{7}x 7 in the polynomial expansion of ( 1 + 2 x β x 2 ) 4 \left(1+2x-x^{2}\right)^{4}( 1 + 2 x β x 2 ) 4 is
Answer Choices:
A. β 8 -8β 8
B. 12 121 2
C. 6 66
D. β 12 -12β 1 2
E. none of these
Solution:
View Solution
Problem 4: What is the remainder when x 51 + 51 x^{51}+51x 5 1 + 5 1 is divided by x + 1 x+1x + 1 ?
Answer Choices:
A. 0 00
B. 1 11
C. 49 494 9
D. 50 505 0
E. 51 515 1
Solution:
View Solution
Problem 5: Given a quadrilateral A B C D ABCDA B C D inscribed in a circle with side A B ABA B extended beyond B BB to point E EE , if β B A D = 9 2 β \angle BAD=92^{\circ}β B A D = 9 2 β and β A D C = 6 8 β \angle ADC=68^{\circ}β A D C = 6 8 β , find β E B C \angle EBCβ E B C
Answer Choices:
A. 6 6 β 66^{\circ}6 6 β
B. 6 8 β 68^{\circ}6 8 β
C. 7 0 β 70^{\circ}7 0 β
D. 8 8 β 88^{\circ}8 8 β
E. 9 2 β 92^{\circ}9 2 β
Solution:
View Solution
Problem 6: For positive real numbers x xx and y yy define x β y = x β
y x + y x * y=\dfrac{x \cdot y}{x+y}x β y = x + y x β
y β ; then
Answer Choices:
A. β *β is commutative but not associative
B. β *β is associative but not commutative
C. β *β is neither commutative nor associative
D. β *β is commutative and associative
E. none of these
Solution:
View Solution
Problem 7: A town's population increased by 1,200 people, and then this new population decreased by 11 % 11 \%1 1 % . The town now had 32 less people than it did before the 1,200 increase. What is the original population?
Answer Choices:
A. 1200 12001 2 0 0
B. 11200 112001 1 2 0 0
C. 9968 99689 9 6 8
D. 10000 100001 0 0 0 0
E. none of these
Solution:
View Solution
Problem 8: What is the smallest prime number dividing the sum 3 11 + 5 13 3^{11}+5^{13}3 1 1 + 5 1 3 ?
Answer Choices:
A. 2 22
B. 3 33
C. 5 55
D. 3 11 + 5 13 3^{11}+5^{13}3 1 1 + 5 1 3
E. none of these
Solution:
View Solution
Problem 9: The integers greater than one are arranged in five columns as follows:
2 3 4 5 9 8 7 6 10 11 12 13 17 16 15 14 β
β
β
β
\begin{array}{ccccc}
& 2 & 3 & 4 & 5 \\
9 & 8 & 7 & 6 & \\
& 10 & 11 & 12 & 13 \\
17 & 16 & 15 & 14 & \\
& \cdot & \cdot & \cdot & \cdot
\end{array}
9 1 7 β 2 8 1 0 1 6 β
β 3 7 1 1 1 5 β
β 4 6 1 2 1 4 β
β 5 1 3 β
β
(Four consecutive integers appear in each row; in the first, third and other odd numbered rows, the integers appear in the last four columns and increase from left to right; in the second, fourth and other even numbered rows, the integers appear in the first four columns and increase from right to left.)
In which column will the number 1,000 fall?
Answer Choices:
A. f i r s t firstf i r s t
B. s e c o n d seconds e c o n d
C. t h i r d thirdt h i r d
D. f o u r t h fourthf o u r t h
E. f i f t h fifthf i f t h
Solution:
View Solution
Problem 10: What is the smallest integral value of k kk such that 2 x ( k x β 4 ) β x 2 + 6 = 0 2x(kx-4)-x^{2}+6=02 x ( k x β 4 ) β x 2 + 6 = 0 has no real roots?
Answer Choices:
A. β 1 -1β 1
B. 2 22
C. 3 33
D. 4 44
E. 5 55
Solution:
View Solution
Problem 11: If ( a , b ) (a, b)( a , b ) and ( c , d ) (c, d)( c , d ) are two points on the line whose equation is y = m x + k y=mx+ky = m x + k , then the distance between ( a , b ) (a, b)( a , b ) and ( c , d ) (c, d)( c , d ) , in terms of a , c a, ca , c and m mm , is
Answer Choices:
A. β£ a β c β£ 1 + m 2 |a-c| \sqrt{1+m^{2}}β£ a β c β£ 1 + m 2 β
B. β£ a + c β£ 1 + m 2 |a+c| \sqrt{1+m^{2}}β£ a + c β£ 1 + m 2 β
C. β£ a β c β£ 1 + m 2 \dfrac{|a-c|}{\sqrt{1+m^{2}}}1 + m 2 β β£ a β c β£ β
D. β£ a β c β£ ( 1 + m 2 ) \mid a-c \mid(1+m^{2})β£ a β c β£ ( 1 + m 2 )
E. β£ a β c β£ β£ m β£ |a-c||m|β£ a β c β£ β£ m β£
Solution:
View Solution
Problem 12: If g ( x ) = 1 β x 2 g(x)=1-x^{2}g ( x ) = 1 β x 2 and f ( g ( x ) ) = 1 β x 2 x 2 f(g(x))=\dfrac{1-x^{2}}{x^{2}}f ( g ( x ) ) = x 2 1 β x 2 β when x β 0 x \neq 0x ξ = 0 , then f ( 1 / 2 ) f(1 / 2)f ( 1 / 2 ) equals
Answer Choices:
A. 3 / 4 3 / 43 / 4
B. 1 11
C. 3 33
D. 2 / 2 \sqrt{2} / 22 β / 2
E. 2 \sqrt{2}2 β
Solution:
View Solution
Problem 13: Which of the following is equivalent to "If P PP is true then Q QQ is false."?
Answer Choices:
A. P is true or Q is false.
B. If Q QQ is false then P PP is true.
C. If P PP is false then Q QQ is true.
D. If Q is true then P is false.
E. If Q is true then P is true.
Solution:
View Solution
Problem 14: Which statement is correct?
Answer Choices:
A. If x < 0 x<0x < 0 , then x 2 > x x^{2}>xx 2 > x .
B. If x 2 > 0 x^{2}>0x 2 > 0 , then x > 0 x>0x > 0 .
C. If x 2 > x x^{2}>xx 2 > x , then x > 0 x>0x > 0 .
D. If x 2 > x x^{2}>xx 2 > x , then x < 0 x<0x < 0 .
E. If x < 1 x<1x < 1 , then x 2 < x x^{2}<xx 2 < x .
Solution:
View Solution
Problem 15: If x < β 2 x<-2x < β 2 then β£ 1 β β£ 1 + x β£ β£ |1-|1+x||β£ 1 β β£ 1 + x β£ β£ equals
Answer Choices:
A. 2 + x 2+x2 + x
B. β 2 β x -2-xβ 2 β x
C. x xx
D. β x -xβ x
E. β 2 -2β 2
Solution:
View Solution
Problem 16: A circle of radius r rr is inscribed in a right isosceles triangle, and a circle of radius R RR is circumscribed about the triangle. Then R r \dfrac{R}{r}r R β equals
Answer Choices:
A. 1 + 2 1+\sqrt{2}1 + 2 β
B. 2 + 2 2 \dfrac{2+\sqrt{2}}{2}2 2 + 2 β β
C. 2 β 1 2 \dfrac{\sqrt{2}-1}{2}2 2 β β 1 β
D. 1 + 2 2 \dfrac{1+\sqrt{2}}{2}2 1 + 2 β β
E. 2 ( 2 β 2 ) 2(2-\sqrt{2})2 ( 2 β 2 β )
Solution:
View Solution
Problem 17: If i 2 = β 1 i^{2}=-1i 2 = β 1 , then ( 1 + i ) 20 β ( 1 β i ) 20 (1+i)^{20}-(1-i)^{20}( 1 + i ) 2 0 β ( 1 β i ) 2 0 equals
Answer Choices:
A. β 1024 -1024β 1 0 2 4
B. β 1024 i -1024iβ 1 0 2 4 i
C. 0 00
D. 1024 10241 0 2 4
E. 1024 i 1024i1 0 2 4 i
Solution:
View Solution
Problem 18: If 8 3 = p \log _{8} 3=plog 8 β 3 = p and 3 5 = q \log _{3} 5=qlog 3 β 5 = q , then, in terms of p pp and q , 10 5 q, \log _{10} 5q , log 1 0 β 5 equals
Answer Choices:
A. p q p qp q
B. 3 p + q 5 \dfrac{3p+q}{5}5 3 p + q β
C. 1 + 3 p q p + q \dfrac{1+3pq}{p+q}p + q 1 + 3 p q β
D. 3 p q 1 + 3 p q \dfrac{3pq}{1+3pq}1 + 3 p q 3 p q β
E. p 2 + q 2 p^{2}+q^{2}p 2 + q 2
Solution:
View Solution
Problem 19: In the adjoining figure ABCD is a square and C M N C M NC M N is an equilateral triangle. If the area of A B C D A B C DA B C D is one square inch, then the area of CMN in square inches is
Answer Choices:
A. 2 3 β 3 2 \sqrt{3}-32 3 β β 3
B. 2 / 3 \sqrt{2} / 32 β / 3
C. 1 β 3 / 3 1-\sqrt{3} / 31 β 3 β / 3
D. 4 β 2 3 4-2 \sqrt{3}4 β 2 3 β
E. 3 / 4 \sqrt{3} / 43 β / 4
Solution:
View Solution
Problem 20: Let T = 1 3 β 8 β 1 8 β 7 + 1 7 β 6 β 1 6 β 5 + 1 5 β 2 \mathrm{T}=\dfrac{1}{3-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-2}T = 3 β 8 β 1 β β 8 β β 7 β 1 β + 7 β β 6 β 1 β β 6 β β 5 β 1 β + 5 β β 2 1 β ; then
Answer Choices:
A. T < 1 \mathrm{T}<1T < 1
B. T = 1 \mathrm{T}=1T = 1
C. 1 < T < 2 1<\mathrm{T}<21 < T < 2
D. T > 2 \mathrm{T}>2T > 2
E. T = 1 ( 3 β 8 ) ( 8 β 7 ) ( 7 β 6 ) ( 6 β 5 ) ( 5 β 2 ) \mathrm{T}=\dfrac{1}{(3-\sqrt{8})(\sqrt{8}-\sqrt{7})(\sqrt{7}-\sqrt{6})(\sqrt{6}-\sqrt{5})(\sqrt{5}-2)}T = ( 3 β 8 β ) ( 8 β β 7 β ) ( 7 β β 6 β ) ( 6 β β 5 β ) ( 5 β β 2 ) 1 β
Solution:
View Solution
Problem 21: In a geometric series of positive terms the difference between the fifth and fourth terms is 576, and the difference between the second and first terms is 9. What is the sum of the first five terms of this series?
Answer Choices:
A. 1061 10611 0 6 1
B. 1023 10231 0 2 3
C. 1024 10241 0 2 4
D. 768 7687 6 8
E. none of these
Solution:
View Solution
Problem 22: The minimum value of sin β‘ A 2 β 3 cos β‘ A 2 \sin \dfrac{A}{2}-\sqrt{3} \cos \dfrac{A}{2}sin 2 A β β 3 β cos 2 A β is attained when A AA is
Answer Choices:
A. β 18 0 β -180^{\circ}β 1 8 0 β
B. 6 0 β 60^{\circ}6 0 β
C. 12 0 β 120^{\circ}1 2 0 β
D. 0 β 0^{\circ}0 β
E. none of these
Solution:
View Solution
Problem 23: In the adjoining figure T P T PT P and T β² Q T^{\prime} QT β² Q are parallel tangents to a circle of radius r rr , with T TT and T β² T^{\prime}T β² the points of tangency. P T β² β² Q P T^{\prime \prime} QP T β² β² Q is a third tangent with T β² β² T^{\prime \prime}T β² β² as point of tangency. If T P = 4 T P=4T P = 4 and T β² Q = 9 T^{\prime} Q=9T β² Q = 9 then r rr is
Answer Choices:
A. 25 / 6 25 / 62 5 / 6
B. 6 66
C. 25 / 4 25 / 42 5 / 4
D. a number other than 25 / 6 , 6 , 25 / 4 25 / 6,6,25 / 42 5 / 6 , 6 , 2 5 / 4
E. not determinable from the given information
Solution:
View Solution
Problem 24: A fair die is rolled six times. The probability of rolling at least a five at least five times is
Answer Choices:
A. 13 / 729 13 / 7291 3 / 7 2 9
B. 12 / 729 12 / 7291 2 / 7 2 9
C. 2 / 729 2 / 7292 / 7 2 9
D. 3 / 729 3 / 7293 / 7 2 9
E. none of these
Solution:
View Solution
Problem 25: In parallelogram A B C D A B C DA B C D of the accompanying diagram, line D P D PD P is drawn bisecting B C B CB C at N NN and meeting A B A BA B (extended) at P PP . From vertex C CC , line C Q C QC Q is drawn bisecting side A D A DA D at M MM and meeting A B A BA B (extended) at Q QQ . Lines D P D PD P and C Q C QC Q meet at O OO . If the area of parallelogram A B C D A B C DA B C D is k kk , then the area of triangle QPO is equal to
Answer Choices:
A. k kk
B. 6 k / 5 6 \mathrm{k} / 56 k / 5
C. 9 k / 8 9 \mathrm{k} / 89 k / 8
D. 5 k / 4 5 \mathrm{k} / 45 k / 4
E. 2 k 2k2 k
Solution:
View Solution
Problem 26: The number of distinct positive integral divisors of ( 30 ) 4 (30)^{4}( 3 0 ) 4 excluding 1 and ( 30 ) 4 (30)^{4}( 3 0 ) 4 is
Answer Choices:
A. 100 1001 0 0
B. 125 1251 2 5
C. 123 1231 2 3
D. 30 303 0
E. none of these
Solution:
View Solution
Problem 27: If f ( x ) = 3 x + 2 f(x)=3x+2f ( x ) = 3 x + 2 for all real x xx , then the statement: "β£ f ( x ) + 4 β£ < a |f(x)+4|<aβ£ f ( x ) + 4 β£ < a whenever β£ x + 2 β£ < b |x+2|<bβ£ x + 2 β£ < b and a > 0 a>0a > 0 and b > 0 b>0b > 0 " is true when
Answer Choices:
A. b β©½ a / 3 b \leqslant a / 3b β©½ a / 3
B. b > a / 3 b>a / 3b > a / 3
C. a β©½ b / 3 a \leqslant b / 3a β©½ b / 3
D. a > b / 3 a>b / 3a > b / 3
E. The statement is never true
Solution:
View Solution
Problem 28: Which of the following is satisfied by all numbers x xx of the form
x = a 1 3 + a 2 3 2 + β¦ + a 25 3 25 x=\dfrac{a_{1}}{3}+\dfrac{a_{2}}{3^{2}}+\ldots+\dfrac{a_{2 5}}{3^{2 5}}
x = 3 a 1 β β + 3 2 a 2 β β + β¦ + 3 2 5 a 2 5 β β
where a 1 a_{1}a 1 β is 0 or 2 , a 2 2, a_{2}2 , a 2 β is 0 or 2 , β¦ , a 25 2, \ldots, a_{25}2 , β¦ , a 2 5 β is 0 00 or 2 22 ?
Answer Choices:
A. 0 β©½ x < 1 / 3 0 \leqslant x<1 / 30 β©½ x < 1 / 3
B. 1 / 3 β©½ x < 2 / 3 1 / 3 \leqslant x<2 / 31 / 3 β©½ x < 2 / 3
C. 2 / 3 β©½ x < 1 2 / 3 \leqslant x<12 / 3 β©½ x < 1
D. 0 β©½ x < 1 / 3 0 \leqslant x<1 / 30 β©½ x < 1 / 3 or 2 / 3 β©½ x < 1 2 / 3 \leqslant x<12 / 3 β©½ x < 1
E. 1 / 2 β©½ x β©½ 3 / 4 1 / 2 \leqslant x \leqslant 3 / 41 / 2 β©½ x β©½ 3 / 4
Solution:
View Solution
Problem 29: For p = 1 , 2 , β¦ , 10 p=1,2, \ldots, 10p = 1 , 2 , β¦ , 1 0 let S p S_{p}S p β be the sum of the first 40 terms of the arithmetic progression whose first term is p pp and whose common difference is 2 p β 1 2 p-12 p β 1 ; then S 1 + S 2 + β¦ + S 10 \mathrm{S}_{1}+\mathrm{S}_{2}+\ldots+\mathrm{S}_{10}S 1 β + S 2 β + β¦ + S 1 0 β is
Answer Choices:
A. 80 , 000 80,0008 0 , 0 0 0
B. 80 , 200 80,2008 0 , 2 0 0
C. 80 , 400 80,4008 0 , 4 0 0
D. 80 , 600 80,6008 0 , 6 0 0
E. 80 , 800 80,8008 0 , 8 0 0
Solution:
View Solution
Problem 30: A line segment is divided so that the lesser part is to the greater part as the greater part is to the whole. If R RR is the ratio of the lesser part to the greater part, then the value of
R [ R ( R 2 + 1 R ) + 1 R ] + 1 R R^{\left[R^{\left(R^{2}+\frac{1}{R}\right)}+\frac{1}{R}\right]}+\frac{1}{R}
R [ R ( R 2 + R 1 β ) + R 1 β ] + R 1 β
is
Answer Choices:
A. 2 22
B. 2 R 2R2 R
C. 1 / R 1/R1 / R
D. 2 + 1 / R 2 + 1/R2 + 1 / R
E. 2 + R 2+R2 + R
Solution:
View Solution
The problems on this page are the property of the MAA's American Mathematics Competitions