ΒΆ 1984 AHSME Problems and Solutions
Individual Problems and Solutions
For problems and detailed solutions to each of the 1984 AHSME problems, please refer below:
Problem 1: 100 0 2 25 2 2 β 24 8 2 \dfrac{1000^{2}}{252^{2}-248^{2}}2 5 2 2 β 2 4 8 2 1 0 0 0 2 β equals
Answer Choices:
A. 62 , 500 62,5006 2 , 5 0 0
B. 1000 10001 0 0 0
C. 500 5005 0 0
D. 250 2502 5 0
E. 1 2 \dfrac{1}{2}2 1 β
Solution:
View Solution
Problem 2: If x , y x, yx , y and y β 1 x y-\dfrac{1}{x}y β x 1 β are not 0 00 , then
x β 1 y y β 1 x equals \dfrac{x-\dfrac{1}{y}}{y-\dfrac{1}{x}} \quad \text { equals }
y β x 1 β x β y 1 β β equals
Answer Choices:
A. 1 11
B. x y \dfrac{x}{y}y x β
C. y x \dfrac{y}{x}x y β
D. x y β y x \dfrac{x}{y}-\dfrac{y}{x}y x β β x y β
E. x y β 1 x y xy-\dfrac{1}{xy}x y β x y 1 β
Solution:
View Solution
Problem 3: Let n nn be the smallest nonprime integer greater than 1 11 with no prime factor less than 10 101 0 . Then
Answer Choices:
A. 100 < n β€ 110 100 < n \leq 1101 0 0 < n β€ 1 1 0
B. 110 < n β€ 120 110 < n \leq 1201 1 0 < n β€ 1 2 0
C. 120 < n β€ 130 120 < n \leq 1301 2 0 < n β€ 1 3 0
D. 130 < n β€ 140 130 < n \leq 1401 3 0 < n β€ 1 4 0
E. 140 < n β€ 150 140 < n \leq 1501 4 0 < n β€ 1 5 0
Solution:
View Solution
Problem 4: A rectangle intersects a circle as shown: A B = 4 , B C = 5 A B=4, B C=5A B = 4 , B C = 5 and D E = 3 D E=3D E = 3 . Then E F E FE F equals
Answer Choices:
A. 6 66
B. 7 77
C. 20 3 \dfrac{20}{3}3 2 0 β
D. 8 88
E. 9 99
Solution:
View Solution
Problem 5: The largest integer n nn for which n 200 < 5 300 n^{200} < 5^{300}n 2 0 0 < 5 3 0 0 is
Answer Choices:
A. 8 88
B. 9 99
C. 10 101 0
D. 11 111 1
E. 12 121 2
Solution:
View Solution
Problem 6: In a certain school, there are three times as many boys as girls and nine times as many girls as teachers. Using the letters b , g , t b, g, tb , g , t to represent the number of boys, girls and teachers, respectively, then the total number of boys, girls and teachers can be represented by the expression
Answer Choices:
A. 31 b 31b3 1 b
B. 37 27 b \dfrac{37}{27}b2 7 3 7 β b
C. 13 g 13g1 3 g
D. 37 27 g \dfrac{37}{27}g2 7 3 7 β g
E. 37 27 t \dfrac{37}{27}t2 7 3 7 β t
Solution:
View Solution
Problem 7: When Dave walks to school, he averages 90 909 0 steps per minute, each of his steps 75 757 5 cm long. It takes him 16 161 6 minutes to get to school. His brother, Jack, going to the same school by the same route, averages 100 1001 0 0 steps per minute, but his steps are only 60 606 0 cm long. How long does it take Jack to get to school?
Answer Choices:
A. 14 2 9 m i n 14 \dfrac{2}{9} \mathrm{~min}1 4 9 2 β m i n
B. 15 151 5 min
C. 18 181 8 min
D. 20 202 0 min
E. 22 2 9 m i n 22 \dfrac{2}{9} \mathrm{~min}2 2 9 2 β m i n
Solution:
View Solution
Problem 8: Figure A B C D A B C DA B C D is a trapezoid with A B β₯ D C , A B = 5 , B C = 3 2 A B \parallel D C, A B=5, B C=3 \sqrt{2}A B β₯ D C , A B = 5 , B C = 3 2 β , β B C D = 4 5 β \angle B C D=45^{\circ}β B C D = 4 5 β and β C D A = 6 0 β \angle C D A=60^{\circ}β C D A = 6 0 β . The length of D C D CD C is
Answer Choices:
A. 7 + 2 3 3 7 + \dfrac{2}{3} \sqrt{3}7 + 3 2 β 3 β
B. 8 88
C. 9 1 2 9 \dfrac{1}{2}9 2 1 β
D. 8 + 3 8 + \sqrt{3}8 + 3 β
E. 8 + 3 3 8 + 3 \sqrt{3}8 + 3 3 β
Solution:
View Solution
Problem 9: The number of digits in 4 16 5 25 4^{16} 5^{25}4 1 6 5 2 5 (when written in the usual base 10 101 0 form) is
Answer Choices:
A. 31 313 1
B. 30 303 0
C. 29 292 9
D. 28 282 8
E. 27 272 7
Solution:
View Solution
Problem 10: Four complex numbers lie at the vertices of a square in the complex plane. Three of the numbers are 1 + 2 i , β 2 + i 1 + 2 i, -2 + i1 + 2 i , β 2 + i and β 1 β 2 i -1 - 2 iβ 1 β 2 i . The fourth number is
Answer Choices:
A. 2 + i 2 + i2 + i
B. 2 β i 2 - i2 β i
C. 1 β 2 i 1 - 2 i1 β 2 i
D. β 1 + 2 i -1 + 2 iβ 1 + 2 i
E. β 2 β i -2 - iβ 2 β i
Solution:
View Solution
Problem 11: A calculator has a key which replaces the displayed entry with its square, and another key which replaces the displayed entry with its reciprocal. Let y yy be the final result if one starts with an entry x β 0 x \neq 0x ξ = 0 and alternately squares and reciprocates n nn times each. Then y yy equals
Answer Choices:
A. x ( ( β 2 ) n ) x^{((-2)^{n})}x ( ( β 2 ) n )
B. x 2 n x^{2n}x 2 n
C. x β 2 n x^{-2n}x β 2 n
D. x β ( 2 n ) x^{-(2^{n})}x β ( 2 n )
E. x ( ( β 1 ) n 2 n ) x^{((-1)^{n}2n)}x ( ( β 1 ) n 2 n )
Solution:
View Solution
Problem 12: If the sequence { a n } \left\{a_{n}\right\}{ a n β } is defined by
a 1 = 2 a n + 1 = a n + 2 n ( n β₯ 1 ) \begin{aligned}
& a_{1}=2 \\
& a_{n+1}=a_{n}+2 n \quad(n \geq 1)
\end{aligned}
β a 1 β = 2 a n + 1 β = a n β + 2 n ( n β₯ 1 ) β
then a 100 a_{100}a 1 0 0 β equals
Answer Choices:
A. 9900 99009 9 0 0
B. 9902 99029 9 0 2
C. 9904 99049 9 0 4
D. 10100 101001 0 1 0 0
E. 10102 101021 0 1 0 2
Solution:
View Solution
Problem 13: 2 6 2 + 3 + 5 \dfrac{2 \sqrt{6}}{\sqrt{2} + \sqrt{3} + \sqrt{5}}2 β + 3 β + 5 β 2 6 β β equals
Answer Choices:
A. 2 + 3 β 5 \sqrt{2} + \sqrt{3} - \sqrt{5}2 β + 3 β β 5 β
B. 4 β 2 β 3 4 - \sqrt{2} - \sqrt{3}4 β 2 β β 3 β
C. 2 + 3 + 6 β 5 \sqrt{2} + \sqrt{3} + \sqrt{6} - 52 β + 3 β + 6 β β 5
D. 1 2 ( 2 + 5 β 3 ) \dfrac{1}{2} (\sqrt{2} + \sqrt{5} - \sqrt{3})2 1 β ( 2 β + 5 β β 3 β )
E. 1 3 ( 3 + 5 β 2 ) \dfrac{1}{3} (\sqrt{3} + \sqrt{5} - \sqrt{2})3 1 β ( 3 β + 5 β β 2 β )
Solution:
View Solution
Problem 14: The product of all real roots of the equation x 10 x = 10 x^{\log _{10} x} = 10x l o g 1 0 β x = 1 0 is
Answer Choices:
A. 1 11
B. β 1 -1β 1
C. 10 101 0
D. 1 0 β 1 10^{-1}1 0 β 1
E. none of these
Solution:
View Solution
Problem 15: If sin β‘ 2 x sin β‘ 3 x = cos β‘ 2 x cos β‘ 3 x \sin 2x \sin 3x = \cos 2x \cos 3xsin 2 x sin 3 x = cos 2 x cos 3 x , then one value for x xx is
Answer Choices:
A. 1 8 β 18^{\circ}1 8 β
B. 3 0 β 30^{\circ}3 0 β
C. 3 6 β 36^{\circ}3 6 β
D. 4 5 β 45^{\circ}4 5 β
E. 6 0 β 60^{\circ}6 0 β
Solution:
View Solution
Problem 16: The function f ( x ) f(x)f ( x ) satisfies f ( 2 + x ) = f ( 2 β x ) f(2+x)=f(2-x)f ( 2 + x ) = f ( 2 β x ) for all real numbers x xx . If the equation f ( x ) = 0 f(x)=0f ( x ) = 0 has exactly four distinct real roots, then the sum of these roots is
Answer Choices:
A. 0 00
B. 2 22
C. 4 44
D. 6 66
E. 8 88
Solution:
View Solution
Problem 17: A right triangle A B C A B CA B C with hypotenuse A B A BA B has side A C = 15 A C=15A C = 1 5 . Altitude C H C HC H divides A B A BA B into segments A H A HA H and H B H BH B , with H B = 16 H B=16H B = 1 6 . The area of β³ A B C \triangle A B Cβ³ A B C is
Answer Choices:
A. 120 1201 2 0
B. 144 1441 4 4
C. 150 1501 5 0
D. 216 2162 1 6
E. 144 5 144 \sqrt{5}1 4 4 5 β
Solution:
View Solution
Problem 18: A point ( x , y ) (x, y)( x , y ) is to be chosen in the coordinate plane so that it is equally distant from the x xx -axis, the y yy -axis, and the line x + y = 2 x+y=2x + y = 2 . Then x xx is
Answer Choices:
A. 2 β 1 \sqrt{2}-12 β β 1
B. 1 2 \dfrac{1}{2}2 1 β
C. 2 β 2 2-\sqrt{2}2 β 2 β
D. 1 11
E. not uniquely determined
Solution:
View Solution
Problem 19: A box contains 11 111 1 balls, numbered 1 , 2 , 3 , β¦ , 11 1,2,3, \ldots, 111 , 2 , 3 , β¦ , 1 1 . If 6 66 balls are drawn simultaneously at random, what is the probability that the sum of the numbers on the balls drawn is odd?
Answer Choices:
A. 100 231 \dfrac{100}{231}2 3 1 1 0 0 β
B. 115 231 \dfrac{115}{231}2 3 1 1 1 5 β
C. 1 2 \dfrac{1}{2}2 1 β
D. 118 231 \dfrac{118}{231}2 3 1 1 1 8 β
E. 6 11 \dfrac{6}{11}1 1 6 β
Solution:
View Solution
Problem 20: The number of distinct solutions of the equation
β£ x β β£ 2 x + 1 β£ β£ = 3 is |x-|2 x+1||=3 \quad \text { is }
β£ x β β£ 2 x + 1 β£ β£ = 3 is
Answer Choices:
A. 0 00
B. 1 11
C. 2 22
D. 3 33
E. 4 44
Solution:
View Solution
Problem 21: The number of triples ( a , b , c ) (a, b, c)( a , b , c ) of positive integers which satisfy the simultaneous equations
a b + b c = 44 a c + b c = 23 \begin{aligned}
& a b+b c=44 \\
& a c+b c=23
\end{aligned}
β a b + b c = 4 4 a c + b c = 2 3 β
is
Answer Choices:
A. 0 00
B. 1 11
C. 2 22
D. 3 33
E. 4 44
Solution:
View Solution
Problem 22: Let a aa and c cc be fixed positive numbers. For each real number t tt let ( x t , y t ) (x_{t}, y_{t})( x t β , y t β ) be the vertex of the parabola y = a x 2 + t x + c y=a x^{2}+t x+cy = a x 2 + t x + c . If the set of vertices ( x t , y t ) (x_{t}, y_{t})( x t β , y t β ) for all real values of t tt is graphed in the plane, the graph is
Answer Choices:
A. a straight line
B. a parabola
C. part, but not all, of a parabola
D. one branch of a hyperbola
E. none of these
Solution:
View Solution
Problem 23: sin β‘ 1 0 β + sin β‘ 2 0 β cos β‘ 1 0 β + cos β‘ 2 0 β \dfrac{\sin 10^{\circ}+\sin 20^{\circ}}{\cos 10^{\circ}+\cos 20^{\circ}}cos 1 0 β + cos 2 0 β sin 1 0 β + sin 2 0 β β equals
Answer Choices:
A. tan β‘ 1 0 β + tan β‘ 2 0 β \tan 10^{\circ}+\tan 20^{\circ}tan 1 0 β + tan 2 0 β
B. tan β‘ 3 0 β \tan 30^{\circ}tan 3 0 β
C. 1 2 ( tan β‘ 1 0 β + tan β‘ 2 0 β ) \dfrac{1}{2}\left(\tan 10^{\circ}+\tan 20^{\circ}\right)2 1 β ( tan 1 0 β + tan 2 0 β )
D. tan β‘ 1 5 β \tan 15^{\circ}tan 1 5 β
E. 1 4 tan β‘ 6 0 β \dfrac{1}{4} \tan 60^{\circ}4 1 β tan 6 0 β
Solution:
View Solution
Problem 24: If a aa and b bb are positive real numbers and each of the equations x 2 + a x + 2 b = 0 x^{2}+a x+2 b=0x 2 + a x + 2 b = 0 and x 2 + 2 b x + a = 0 x^{2}+2 b x+a=0x 2 + 2 b x + a = 0 has real roots, then the smallest possible value of a + b a+ba + b is
Answer Choices:
A. 2 22
B. 3 33
C. 4 44
D. 5 55
E. 6 66
Solution:
View Solution
Problem 25: The total area of all the faces of a rectangular solid is 22 c m 2 22 \mathrm{~cm}^{2}2 2 c m 2 , and the total length of all its edges is 24 242 4 cm. Then the length in cm of any one of its internal diagonals is
Answer Choices:
A. 11 \sqrt{11}1 1 β
B. 12 \sqrt{12}1 2 β
C. 13 \sqrt{13}1 3 β
D. 14 \sqrt{14}1 4 β
E. not uniquely determined
Solution:
View Solution
Problem 26: In the obtuse triangle A B C , A M = M B , M D β₯ B C , E C β₯ B C A B C, A M=M B, M D \perp B C, E C \perp B CA B C , A M = M B , M D β₯ B C , E C β₯ B C . If the area of β³ A B C \triangle A B Cβ³ A B C is 24 242 4 , then the area of β³ B E D \triangle B E Dβ³ B E D is
Answer Choices:
A. 9 99
B. 12 121 2
C. 15 151 5
D. 18 181 8
E. not uniquely determined
Solution:
View Solution
Problem 27: In β³ A B C , D \triangle A B C, Dβ³ A B C , D is on A C A CA C and F FF is on B C B CB C . Also, A B β₯ A C , A F β₯ B C A B \perp A C, A F \perp B CA B β₯ A C , A F β₯ B C , and B D = D C = F C = 1 B D=D C=F C=1B D = D C = F C = 1 . Find A C A CA C .
Answer Choices:
A. 2 \sqrt{2}2 β
B. 3 \sqrt{3}3 β
C. 2 3 \sqrt[3]{2}3 2 β
D. 3 3 \sqrt[3]{3}3 3 β
E. 3 4 \sqrt[4]{3}4 3 β
Solution:
View Solution
Problem 28: The number of distinct pairs of integers ( x , y ) (x, y)( x , y ) such that 0 < x < y 0<x<y0 < x < y and 1984 = x + y \sqrt{1984}=\sqrt{x}+\sqrt{y}1 9 8 4 β = x β + y β is
Answer Choices:
A. 0 00
B. 1 11
C. 3 33
D. 4 44
E. 7 77
Solution:
View Solution
Problem 29: Find the largest value of y x \dfrac{y}{x}x y β for pairs of real numbers ( x , y ) (x, y)( x , y ) which satisfy ( x β 3 ) 2 + ( y β 3 ) 2 = 6 (x-3)^{2}+(y-3)^{2}=6( x β 3 ) 2 + ( y β 3 ) 2 = 6 .
Answer Choices:
A. 3 + 2 2 3+2 \sqrt{2}3 + 2 2 β
B. 2 + 3 2+\sqrt{3}2 + 3 β
C. 3 3 3 \sqrt{3}3 3 β
D. 6 66
E. 6 + 2 3 6+2 \sqrt{3}6 + 2 3 β
Solution:
View Solution
Problem 30: For any complex number w = a + b i , β£ w β£ w=a+b i, |w|w = a + b i , β£ w β£ is defined to be the real number a 2 + b 2 \sqrt{a^{2}+b^{2}}a 2 + b 2 β . If w = cos β‘ 4 0 β + i sin β‘ 4 0 β w=\cos 40^{\circ}+i \sin 40^{\circ}w = cos 4 0 β + i sin 4 0 β , then β£ w + 2 w 2 + 3 w 3 + β― + 9 w 9 β£ β 1 \left|w+2 w^{2}+3 w^{3}+\cdots+9 w^{9}\right|^{-1}β£ β£ β£ β w + 2 w 2 + 3 w 3 + β― + 9 w 9 β£ β£ β£ β β 1 equals
Answer Choices:
A. 1 9 sin β‘ 4 0 β \dfrac{1}{9} \sin 40^{\circ}9 1 β sin 4 0 β
B. 2 9 sin β‘ 2 0 β \dfrac{2}{9} \sin 20^{\circ}9 2 β sin 2 0 β
C. 1 9 cos β‘ 4 0 β \dfrac{1}{9} \cos 40^{\circ}9 1 β cos 4 0 β
D. 1 18 cos β‘ 2 0 β \dfrac{1}{18} \cos 20^{\circ}1 8 1 β cos 2 0 β
E. none of these
Solution:
View Solution
The problems on this page are the property of the MAA's American Mathematics Competitions